Mathematical Models in Photographic Science:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2003
|
Schriftenreihe: | Mathematics in Industry
3 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | th Although photography has its beginning in the 17 century, it was only in the 1920’s that photography emerged as a science. And as with other s- ences, mathematics began to play an increasing role in the development of photography. The mathematical models and problems encountered in p- tography span a very broad spectrum, from the molecular level such as the interaction between photons and silver halide grains in image formation, to chemical processing in ?lm development and issues in manufacturing and quality control. In this book we present mathematical models that arise in today’s p- tographic science. The book contains seventeen chapters, each dealing with oneareaofphotographicscience.Eachchapter,exceptthetwointroductory chapters, begins with general background information at a level understa- able by graduate and undergraduate students. It then proceeds to develop a mathematical model, using mathematical tools such as Ordinary Di?erential Equations, Partial Di?erential Equations, and Stochastic Processes. Next, some mathematical results are mentioned, often providing a partial solution to problemsraisedby the model.Finally,mostchaptersinclude problems.By the nature of the subject, there is quite a bit ofdisparity in the mathematical level of the various chapters |
Beschreibung: | 1 Online-Ressource (VIII, 184 p) |
ISBN: | 9783642557552 9783642629136 |
ISSN: | 1612-3956 |
DOI: | 10.1007/978-3-642-55755-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422614 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 |||| o||u| ||||||eng d | ||
020 | |a 9783642557552 |c Online |9 978-3-642-55755-2 | ||
020 | |a 9783642629136 |c Print |9 978-3-642-62913-6 | ||
024 | 7 | |a 10.1007/978-3-642-55755-2 |2 doi | |
035 | |a (OCoLC)1184261886 | ||
035 | |a (DE-599)BVBBV042422614 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.353 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Friedman, Avner |e Verfasser |4 aut | |
245 | 1 | 0 | |a Mathematical Models in Photographic Science |c by Avner Friedman, David S. Ross |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2003 | |
300 | |a 1 Online-Ressource (VIII, 184 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Mathematics in Industry |v 3 |x 1612-3956 | |
500 | |a th Although photography has its beginning in the 17 century, it was only in the 1920’s that photography emerged as a science. And as with other s- ences, mathematics began to play an increasing role in the development of photography. The mathematical models and problems encountered in p- tography span a very broad spectrum, from the molecular level such as the interaction between photons and silver halide grains in image formation, to chemical processing in ?lm development and issues in manufacturing and quality control. In this book we present mathematical models that arise in today’s p- tographic science. The book contains seventeen chapters, each dealing with oneareaofphotographicscience.Eachchapter,exceptthetwointroductory chapters, begins with general background information at a level understa- able by graduate and undergraduate students. It then proceeds to develop a mathematical model, using mathematical tools such as Ordinary Di?erential Equations, Partial Di?erential Equations, and Stochastic Processes. Next, some mathematical results are mentioned, often providing a partial solution to problemsraisedby the model.Finally,mostchaptersinclude problems.By the nature of the subject, there is quite a bit ofdisparity in the mathematical level of the various chapters | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Chemistry, inorganic | |
650 | 4 | |a Chemical engineering | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Computer science / Mathematics | |
650 | 4 | |a Surfaces (Physics) | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Condensed Matter Physics | |
650 | 4 | |a Computational Mathematics and Numerical Analysis | |
650 | 4 | |a Inorganic Chemistry | |
650 | 4 | |a Characterization and Evaluation of Materials | |
650 | 4 | |a Industrial Chemistry/Chemical Engineering | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Mathematisches Modell |0 (DE-588)4114528-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fotografischer Prozess |0 (DE-588)4132126-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Fotografischer Prozess |0 (DE-588)4132126-1 |D s |
689 | 0 | 1 | |a Mathematisches Modell |0 (DE-588)4114528-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Ross, David S. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-55755-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858031 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153097301262336 |
---|---|
any_adam_object | |
author | Friedman, Avner |
author_facet | Friedman, Avner |
author_role | aut |
author_sort | Friedman, Avner |
author_variant | a f af |
building | Verbundindex |
bvnumber | BV042422614 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184261886 (DE-599)BVBBV042422614 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-55755-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03504nmm a2200613zcb4500</leader><controlfield tag="001">BV042422614</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642557552</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-55755-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642629136</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-62913-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-55755-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184261886</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422614</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Friedman, Avner</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical Models in Photographic Science</subfield><subfield code="c">by Avner Friedman, David S. Ross</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 184 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Mathematics in Industry</subfield><subfield code="v">3</subfield><subfield code="x">1612-3956</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">th Although photography has its beginning in the 17 century, it was only in the 1920’s that photography emerged as a science. And as with other s- ences, mathematics began to play an increasing role in the development of photography. The mathematical models and problems encountered in p- tography span a very broad spectrum, from the molecular level such as the interaction between photons and silver halide grains in image formation, to chemical processing in ?lm development and issues in manufacturing and quality control. In this book we present mathematical models that arise in today’s p- tographic science. The book contains seventeen chapters, each dealing with oneareaofphotographicscience.Eachchapter,exceptthetwointroductory chapters, begins with general background information at a level understa- able by graduate and undergraduate students. It then proceeds to develop a mathematical model, using mathematical tools such as Ordinary Di?erential Equations, Partial Di?erential Equations, and Stochastic Processes. Next, some mathematical results are mentioned, often providing a partial solution to problemsraisedby the model.Finally,mostchaptersinclude problems.By the nature of the subject, there is quite a bit ofdisparity in the mathematical level of the various chapters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemistry, inorganic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Chemical engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Surfaces (Physics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Condensed Matter Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inorganic Chemistry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Characterization and Evaluation of Materials</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Industrial Chemistry/Chemical Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fotografischer Prozess</subfield><subfield code="0">(DE-588)4132126-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Fotografischer Prozess</subfield><subfield code="0">(DE-588)4132126-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematisches Modell</subfield><subfield code="0">(DE-588)4114528-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ross, David S.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-55755-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858031</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422614 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783642557552 9783642629136 |
issn | 1612-3956 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858031 |
oclc_num | 1184261886 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 184 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Mathematics in Industry |
spelling | Friedman, Avner Verfasser aut Mathematical Models in Photographic Science by Avner Friedman, David S. Ross Berlin, Heidelberg Springer Berlin Heidelberg 2003 1 Online-Ressource (VIII, 184 p) txt rdacontent c rdamedia cr rdacarrier Mathematics in Industry 3 1612-3956 th Although photography has its beginning in the 17 century, it was only in the 1920’s that photography emerged as a science. And as with other s- ences, mathematics began to play an increasing role in the development of photography. The mathematical models and problems encountered in p- tography span a very broad spectrum, from the molecular level such as the interaction between photons and silver halide grains in image formation, to chemical processing in ?lm development and issues in manufacturing and quality control. In this book we present mathematical models that arise in today’s p- tographic science. The book contains seventeen chapters, each dealing with oneareaofphotographicscience.Eachchapter,exceptthetwointroductory chapters, begins with general background information at a level understa- able by graduate and undergraduate students. It then proceeds to develop a mathematical model, using mathematical tools such as Ordinary Di?erential Equations, Partial Di?erential Equations, and Stochastic Processes. Next, some mathematical results are mentioned, often providing a partial solution to problemsraisedby the model.Finally,mostchaptersinclude problems.By the nature of the subject, there is quite a bit ofdisparity in the mathematical level of the various chapters Mathematics Chemistry, inorganic Chemical engineering Differential equations, partial Computer science / Mathematics Surfaces (Physics) Partial Differential Equations Condensed Matter Physics Computational Mathematics and Numerical Analysis Inorganic Chemistry Characterization and Evaluation of Materials Industrial Chemistry/Chemical Engineering Informatik Mathematik Mathematisches Modell (DE-588)4114528-8 gnd rswk-swf Fotografischer Prozess (DE-588)4132126-1 gnd rswk-swf Fotografischer Prozess (DE-588)4132126-1 s Mathematisches Modell (DE-588)4114528-8 s 1\p DE-604 Ross, David S. Sonstige oth https://doi.org/10.1007/978-3-642-55755-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Friedman, Avner Mathematical Models in Photographic Science Mathematics Chemistry, inorganic Chemical engineering Differential equations, partial Computer science / Mathematics Surfaces (Physics) Partial Differential Equations Condensed Matter Physics Computational Mathematics and Numerical Analysis Inorganic Chemistry Characterization and Evaluation of Materials Industrial Chemistry/Chemical Engineering Informatik Mathematik Mathematisches Modell (DE-588)4114528-8 gnd Fotografischer Prozess (DE-588)4132126-1 gnd |
subject_GND | (DE-588)4114528-8 (DE-588)4132126-1 |
title | Mathematical Models in Photographic Science |
title_auth | Mathematical Models in Photographic Science |
title_exact_search | Mathematical Models in Photographic Science |
title_full | Mathematical Models in Photographic Science by Avner Friedman, David S. Ross |
title_fullStr | Mathematical Models in Photographic Science by Avner Friedman, David S. Ross |
title_full_unstemmed | Mathematical Models in Photographic Science by Avner Friedman, David S. Ross |
title_short | Mathematical Models in Photographic Science |
title_sort | mathematical models in photographic science |
topic | Mathematics Chemistry, inorganic Chemical engineering Differential equations, partial Computer science / Mathematics Surfaces (Physics) Partial Differential Equations Condensed Matter Physics Computational Mathematics and Numerical Analysis Inorganic Chemistry Characterization and Evaluation of Materials Industrial Chemistry/Chemical Engineering Informatik Mathematik Mathematisches Modell (DE-588)4114528-8 gnd Fotografischer Prozess (DE-588)4132126-1 gnd |
topic_facet | Mathematics Chemistry, inorganic Chemical engineering Differential equations, partial Computer science / Mathematics Surfaces (Physics) Partial Differential Equations Condensed Matter Physics Computational Mathematics and Numerical Analysis Inorganic Chemistry Characterization and Evaluation of Materials Industrial Chemistry/Chemical Engineering Informatik Mathematik Mathematisches Modell Fotografischer Prozess |
url | https://doi.org/10.1007/978-3-642-55755-2 |
work_keys_str_mv | AT friedmanavner mathematicalmodelsinphotographicscience AT rossdavids mathematicalmodelsinphotographicscience |