A Mathematical Theory of Arguments for Statistical Evidence:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Heidelberg
Physica-Verlag HD
2003
|
Schriftenreihe: | Contributions to Statistics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The subject of this book is the reasoning under uncertainty based on sta tistical evidence, where the word reasoning is taken to mean searching for arguments in favor or against particular hypotheses of interest. The kind of reasoning we are using is composed of two aspects. The first one is inspired from classical reasoning in formal logic, where deductions are made from a knowledge base of observed facts and formulas representing the domain spe cific knowledge. In this book, the facts are the statistical observations and the general knowledge is represented by an instance of a special kind of sta tistical models called functional models. The second aspect deals with the uncertainty under which the formal reasoning takes place. For this aspect, the theory of hints [27] is the appropriate tool. Basically, we assume that some uncertain perturbation takes a specific value and then logically eval uate the consequences of this assumption. The original uncertainty about the perturbation is then transferred to the consequences of the assumption. This kind of reasoning is called assumption-based reasoning. Before going into more details about the content of this book, it might be interesting to look briefly at the roots and origins of assumption-based reasoning in the statistical context. In 1930, R. A. Fisher [17] defined the notion of fiducial distribution as the result of a new form of argument, as opposed to the result of the older Bayesian argument |
Beschreibung: | 1 Online-Ressource (XIII, 154 p) |
ISBN: | 9783642517464 9783790815276 |
ISSN: | 1431-1968 |
DOI: | 10.1007/978-3-642-51746-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422586 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 |||| o||u| ||||||eng d | ||
020 | |a 9783642517464 |c Online |9 978-3-642-51746-4 | ||
020 | |a 9783790815276 |c Print |9 978-3-7908-1527-6 | ||
024 | 7 | |a 10.1007/978-3-642-51746-4 |2 doi | |
035 | |a (OCoLC)864063650 | ||
035 | |a (DE-599)BVBBV042422586 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 330.015195 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Monney, Paul-André |e Verfasser |4 aut | |
245 | 1 | 0 | |a A Mathematical Theory of Arguments for Statistical Evidence |c by Paul-André Monney |
264 | 1 | |a Heidelberg |b Physica-Verlag HD |c 2003 | |
300 | |a 1 Online-Ressource (XIII, 154 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Contributions to Statistics |x 1431-1968 | |
500 | |a The subject of this book is the reasoning under uncertainty based on sta tistical evidence, where the word reasoning is taken to mean searching for arguments in favor or against particular hypotheses of interest. The kind of reasoning we are using is composed of two aspects. The first one is inspired from classical reasoning in formal logic, where deductions are made from a knowledge base of observed facts and formulas representing the domain spe cific knowledge. In this book, the facts are the statistical observations and the general knowledge is represented by an instance of a special kind of sta tistical models called functional models. The second aspect deals with the uncertainty under which the formal reasoning takes place. For this aspect, the theory of hints [27] is the appropriate tool. Basically, we assume that some uncertain perturbation takes a specific value and then logically eval uate the consequences of this assumption. The original uncertainty about the perturbation is then transferred to the consequences of the assumption. This kind of reasoning is called assumption-based reasoning. Before going into more details about the content of this book, it might be interesting to look briefly at the roots and origins of assumption-based reasoning in the statistical context. In 1930, R. A. Fisher [17] defined the notion of fiducial distribution as the result of a new form of argument, as opposed to the result of the older Bayesian argument | ||
650 | 4 | |a Statistics | |
650 | 4 | |a Computer science / Mathematics | |
650 | 4 | |a Economics / Statistics | |
650 | 4 | |a Statistics for Business/Economics/Mathematical Finance/Insurance | |
650 | 4 | |a Computational Mathematics and Numerical Analysis | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Statistik | |
650 | 4 | |a Wirtschaft | |
650 | 0 | 7 | |a Dempster-Shafer-Theorie |0 (DE-588)4395834-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Unsicheres Schließen |0 (DE-588)4361044-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Unsicheres Schließen |0 (DE-588)4361044-4 |D s |
689 | 0 | 1 | |a Dempster-Shafer-Theorie |0 (DE-588)4395834-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-51746-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027858003 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153097257222144 |
---|---|
any_adam_object | |
author | Monney, Paul-André |
author_facet | Monney, Paul-André |
author_role | aut |
author_sort | Monney, Paul-André |
author_variant | p a m pam |
building | Verbundindex |
bvnumber | BV042422586 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864063650 (DE-599)BVBBV042422586 |
dewey-full | 330.015195 |
dewey-hundreds | 300 - Social sciences |
dewey-ones | 330 - Economics |
dewey-raw | 330.015195 |
dewey-search | 330.015195 |
dewey-sort | 3330.015195 |
dewey-tens | 330 - Economics |
discipline | Mathematik Wirtschaftswissenschaften |
doi_str_mv | 10.1007/978-3-642-51746-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03416nmm a2200541zc 4500</leader><controlfield tag="001">BV042422586</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642517464</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-51746-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783790815276</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-7908-1527-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-51746-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864063650</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422586</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">330.015195</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Monney, Paul-André</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Mathematical Theory of Arguments for Statistical Evidence</subfield><subfield code="c">by Paul-André Monney</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Heidelberg</subfield><subfield code="b">Physica-Verlag HD</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 154 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Contributions to Statistics</subfield><subfield code="x">1431-1968</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The subject of this book is the reasoning under uncertainty based on sta tistical evidence, where the word reasoning is taken to mean searching for arguments in favor or against particular hypotheses of interest. The kind of reasoning we are using is composed of two aspects. The first one is inspired from classical reasoning in formal logic, where deductions are made from a knowledge base of observed facts and formulas representing the domain spe cific knowledge. In this book, the facts are the statistical observations and the general knowledge is represented by an instance of a special kind of sta tistical models called functional models. The second aspect deals with the uncertainty under which the formal reasoning takes place. For this aspect, the theory of hints [27] is the appropriate tool. Basically, we assume that some uncertain perturbation takes a specific value and then logically eval uate the consequences of this assumption. The original uncertainty about the perturbation is then transferred to the consequences of the assumption. This kind of reasoning is called assumption-based reasoning. Before going into more details about the content of this book, it might be interesting to look briefly at the roots and origins of assumption-based reasoning in the statistical context. In 1930, R. A. Fisher [17] defined the notion of fiducial distribution as the result of a new form of argument, as opposed to the result of the older Bayesian argument</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Economics / Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics for Business/Economics/Mathematical Finance/Insurance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wirtschaft</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Dempster-Shafer-Theorie</subfield><subfield code="0">(DE-588)4395834-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Unsicheres Schließen</subfield><subfield code="0">(DE-588)4361044-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Unsicheres Schließen</subfield><subfield code="0">(DE-588)4361044-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Dempster-Shafer-Theorie</subfield><subfield code="0">(DE-588)4395834-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-51746-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027858003</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422586 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783642517464 9783790815276 |
issn | 1431-1968 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027858003 |
oclc_num | 864063650 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIII, 154 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Physica-Verlag HD |
record_format | marc |
series2 | Contributions to Statistics |
spelling | Monney, Paul-André Verfasser aut A Mathematical Theory of Arguments for Statistical Evidence by Paul-André Monney Heidelberg Physica-Verlag HD 2003 1 Online-Ressource (XIII, 154 p) txt rdacontent c rdamedia cr rdacarrier Contributions to Statistics 1431-1968 The subject of this book is the reasoning under uncertainty based on sta tistical evidence, where the word reasoning is taken to mean searching for arguments in favor or against particular hypotheses of interest. The kind of reasoning we are using is composed of two aspects. The first one is inspired from classical reasoning in formal logic, where deductions are made from a knowledge base of observed facts and formulas representing the domain spe cific knowledge. In this book, the facts are the statistical observations and the general knowledge is represented by an instance of a special kind of sta tistical models called functional models. The second aspect deals with the uncertainty under which the formal reasoning takes place. For this aspect, the theory of hints [27] is the appropriate tool. Basically, we assume that some uncertain perturbation takes a specific value and then logically eval uate the consequences of this assumption. The original uncertainty about the perturbation is then transferred to the consequences of the assumption. This kind of reasoning is called assumption-based reasoning. Before going into more details about the content of this book, it might be interesting to look briefly at the roots and origins of assumption-based reasoning in the statistical context. In 1930, R. A. Fisher [17] defined the notion of fiducial distribution as the result of a new form of argument, as opposed to the result of the older Bayesian argument Statistics Computer science / Mathematics Economics / Statistics Statistics for Business/Economics/Mathematical Finance/Insurance Computational Mathematics and Numerical Analysis Informatik Mathematik Statistik Wirtschaft Dempster-Shafer-Theorie (DE-588)4395834-5 gnd rswk-swf Unsicheres Schließen (DE-588)4361044-4 gnd rswk-swf Unsicheres Schließen (DE-588)4361044-4 s Dempster-Shafer-Theorie (DE-588)4395834-5 s 1\p DE-604 https://doi.org/10.1007/978-3-642-51746-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Monney, Paul-André A Mathematical Theory of Arguments for Statistical Evidence Statistics Computer science / Mathematics Economics / Statistics Statistics for Business/Economics/Mathematical Finance/Insurance Computational Mathematics and Numerical Analysis Informatik Mathematik Statistik Wirtschaft Dempster-Shafer-Theorie (DE-588)4395834-5 gnd Unsicheres Schließen (DE-588)4361044-4 gnd |
subject_GND | (DE-588)4395834-5 (DE-588)4361044-4 |
title | A Mathematical Theory of Arguments for Statistical Evidence |
title_auth | A Mathematical Theory of Arguments for Statistical Evidence |
title_exact_search | A Mathematical Theory of Arguments for Statistical Evidence |
title_full | A Mathematical Theory of Arguments for Statistical Evidence by Paul-André Monney |
title_fullStr | A Mathematical Theory of Arguments for Statistical Evidence by Paul-André Monney |
title_full_unstemmed | A Mathematical Theory of Arguments for Statistical Evidence by Paul-André Monney |
title_short | A Mathematical Theory of Arguments for Statistical Evidence |
title_sort | a mathematical theory of arguments for statistical evidence |
topic | Statistics Computer science / Mathematics Economics / Statistics Statistics for Business/Economics/Mathematical Finance/Insurance Computational Mathematics and Numerical Analysis Informatik Mathematik Statistik Wirtschaft Dempster-Shafer-Theorie (DE-588)4395834-5 gnd Unsicheres Schließen (DE-588)4361044-4 gnd |
topic_facet | Statistics Computer science / Mathematics Economics / Statistics Statistics for Business/Economics/Mathematical Finance/Insurance Computational Mathematics and Numerical Analysis Informatik Mathematik Statistik Wirtschaft Dempster-Shafer-Theorie Unsicheres Schließen |
url | https://doi.org/10.1007/978-3-642-51746-4 |
work_keys_str_mv | AT monneypaulandre amathematicaltheoryofargumentsforstatisticalevidence |