Branching Processes and Neutral Evolution:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1992
|
Schriftenreihe: | Lecture Notes in Biomathematics
93 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The Galton-Watson branching process has its roots in the problem of extinction of family names which was given a precise formulation by F. Galton as problem 4001 in the Educational Times (17, 1873). In 1875, an attempt to solve this problem was made by H. W. Watson but as it turned out, his conclusion was incorrect. Half a century later, R. A. Fisher made use of the Galton-Watson process to determine the extinction probability of the progeny of a mutant gene. However, it was J. B. S. Haldane who finally gave the first sketch of the correct conclusion. J. B. S. Haldane also predicted that mathematical genetics might some day develop into a "respectable branch of applied mathematics" (quoted in M. Kimura & T. Ohta, Theoretical Aspects of Population Genetics. Princeton, 1971). Since the time of Fisher and Haldane, the two fields of branching processes and mathematical genetics have attained a high degree of sophistication but in different directions. This monograph is a first attempt to apply the current state of knowledge concerning single-type branching processes to a particular area of mathematical genetics: neutral evolution. The reader is assumed to be familiar with some of the concepts of probability theory, but no particular knowledge of branching processes is required. Following the advice of an anonymous referee, I have enlarged my original version of the introduction (Chapter Zero) in order to make it accessible to a larger audience. G6teborg, Sweden, November 1991 |
Beschreibung: | 1 Online-Ressource (VIII, 112 p) |
ISBN: | 9783642515361 9783540555292 |
ISSN: | 0341-633X |
DOI: | 10.1007/978-3-642-51536-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422576 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1992 |||| o||u| ||||||eng d | ||
020 | |a 9783642515361 |c Online |9 978-3-642-51536-1 | ||
020 | |a 9783540555292 |c Print |9 978-3-540-55529-2 | ||
024 | 7 | |a 10.1007/978-3-642-51536-1 |2 doi | |
035 | |a (OCoLC)1185246038 | ||
035 | |a (DE-599)BVBBV042422576 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 570.285 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Taïb, Ziad |e Verfasser |4 aut | |
245 | 1 | 0 | |a Branching Processes and Neutral Evolution |c by Ziad Taïb |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1992 | |
300 | |a 1 Online-Ressource (VIII, 112 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lecture Notes in Biomathematics |v 93 |x 0341-633X | |
500 | |a The Galton-Watson branching process has its roots in the problem of extinction of family names which was given a precise formulation by F. Galton as problem 4001 in the Educational Times (17, 1873). In 1875, an attempt to solve this problem was made by H. W. Watson but as it turned out, his conclusion was incorrect. Half a century later, R. A. Fisher made use of the Galton-Watson process to determine the extinction probability of the progeny of a mutant gene. However, it was J. B. S. Haldane who finally gave the first sketch of the correct conclusion. J. B. S. Haldane also predicted that mathematical genetics might some day develop into a "respectable branch of applied mathematics" (quoted in M. Kimura & T. Ohta, Theoretical Aspects of Population Genetics. Princeton, 1971). Since the time of Fisher and Haldane, the two fields of branching processes and mathematical genetics have attained a high degree of sophistication but in different directions. This monograph is a first attempt to apply the current state of knowledge concerning single-type branching processes to a particular area of mathematical genetics: neutral evolution. The reader is assumed to be familiar with some of the concepts of probability theory, but no particular knowledge of branching processes is required. Following the advice of an anonymous referee, I have enlarged my original version of the introduction (Chapter Zero) in order to make it accessible to a larger audience. G6teborg, Sweden, November 1991 | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Ecology | |
650 | 4 | |a Botany | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Statistics | |
650 | 4 | |a Mathematical and Computational Biology | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Statistics for Life Sciences, Medicine, Health Sciences | |
650 | 4 | |a Plant Sciences | |
650 | 4 | |a Mathematik | |
650 | 4 | |a Statistik | |
650 | 4 | |a Ökologie | |
650 | 0 | 7 | |a Neutraltheorie |0 (DE-588)4195445-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Populationsgenetik |0 (DE-588)4046804-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Verzweigungsprozess |0 (DE-588)4188184-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Populationsgenetik |0 (DE-588)4046804-5 |D s |
689 | 0 | 1 | |a Neutraltheorie |0 (DE-588)4195445-2 |D s |
689 | 0 | 2 | |a Verzweigungsprozess |0 (DE-588)4188184-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-51536-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857993 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153097195356160 |
---|---|
any_adam_object | |
author | Taïb, Ziad |
author_facet | Taïb, Ziad |
author_role | aut |
author_sort | Taïb, Ziad |
author_variant | z t zt |
building | Verbundindex |
bvnumber | BV042422576 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1185246038 (DE-599)BVBBV042422576 |
dewey-full | 570.285 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 570 - Biology |
dewey-raw | 570.285 |
dewey-search | 570.285 |
dewey-sort | 3570.285 |
dewey-tens | 570 - Biology |
discipline | Biologie Mathematik |
doi_str_mv | 10.1007/978-3-642-51536-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03606nmm a2200601zcb4500</leader><controlfield tag="001">BV042422576</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1992 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642515361</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-51536-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540555292</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-55529-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-51536-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1185246038</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422576</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">570.285</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Taïb, Ziad</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Branching Processes and Neutral Evolution</subfield><subfield code="c">by Ziad Taïb</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 112 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lecture Notes in Biomathematics</subfield><subfield code="v">93</subfield><subfield code="x">0341-633X</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The Galton-Watson branching process has its roots in the problem of extinction of family names which was given a precise formulation by F. Galton as problem 4001 in the Educational Times (17, 1873). In 1875, an attempt to solve this problem was made by H. W. Watson but as it turned out, his conclusion was incorrect. Half a century later, R. A. Fisher made use of the Galton-Watson process to determine the extinction probability of the progeny of a mutant gene. However, it was J. B. S. Haldane who finally gave the first sketch of the correct conclusion. J. B. S. Haldane also predicted that mathematical genetics might some day develop into a "respectable branch of applied mathematics" (quoted in M. Kimura & T. Ohta, Theoretical Aspects of Population Genetics. Princeton, 1971). Since the time of Fisher and Haldane, the two fields of branching processes and mathematical genetics have attained a high degree of sophistication but in different directions. This monograph is a first attempt to apply the current state of knowledge concerning single-type branching processes to a particular area of mathematical genetics: neutral evolution. The reader is assumed to be familiar with some of the concepts of probability theory, but no particular knowledge of branching processes is required. Following the advice of an anonymous referee, I have enlarged my original version of the introduction (Chapter Zero) in order to make it accessible to a larger audience. G6teborg, Sweden, November 1991</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ecology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Botany</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical and Computational Biology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistics for Life Sciences, Medicine, Health Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plant Sciences</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Statistik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ökologie</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Neutraltheorie</subfield><subfield code="0">(DE-588)4195445-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Populationsgenetik</subfield><subfield code="0">(DE-588)4046804-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verzweigungsprozess</subfield><subfield code="0">(DE-588)4188184-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Populationsgenetik</subfield><subfield code="0">(DE-588)4046804-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Neutraltheorie</subfield><subfield code="0">(DE-588)4195445-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Verzweigungsprozess</subfield><subfield code="0">(DE-588)4188184-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-51536-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857993</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422576 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783642515361 9783540555292 |
issn | 0341-633X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857993 |
oclc_num | 1185246038 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 112 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Lecture Notes in Biomathematics |
spelling | Taïb, Ziad Verfasser aut Branching Processes and Neutral Evolution by Ziad Taïb Berlin, Heidelberg Springer Berlin Heidelberg 1992 1 Online-Ressource (VIII, 112 p) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Biomathematics 93 0341-633X The Galton-Watson branching process has its roots in the problem of extinction of family names which was given a precise formulation by F. Galton as problem 4001 in the Educational Times (17, 1873). In 1875, an attempt to solve this problem was made by H. W. Watson but as it turned out, his conclusion was incorrect. Half a century later, R. A. Fisher made use of the Galton-Watson process to determine the extinction probability of the progeny of a mutant gene. However, it was J. B. S. Haldane who finally gave the first sketch of the correct conclusion. J. B. S. Haldane also predicted that mathematical genetics might some day develop into a "respectable branch of applied mathematics" (quoted in M. Kimura & T. Ohta, Theoretical Aspects of Population Genetics. Princeton, 1971). Since the time of Fisher and Haldane, the two fields of branching processes and mathematical genetics have attained a high degree of sophistication but in different directions. This monograph is a first attempt to apply the current state of knowledge concerning single-type branching processes to a particular area of mathematical genetics: neutral evolution. The reader is assumed to be familiar with some of the concepts of probability theory, but no particular knowledge of branching processes is required. Following the advice of an anonymous referee, I have enlarged my original version of the introduction (Chapter Zero) in order to make it accessible to a larger audience. G6teborg, Sweden, November 1991 Mathematics Ecology Botany Distribution (Probability theory) Statistics Mathematical and Computational Biology Probability Theory and Stochastic Processes Statistics for Life Sciences, Medicine, Health Sciences Plant Sciences Mathematik Statistik Ökologie Neutraltheorie (DE-588)4195445-2 gnd rswk-swf Populationsgenetik (DE-588)4046804-5 gnd rswk-swf Verzweigungsprozess (DE-588)4188184-9 gnd rswk-swf Populationsgenetik (DE-588)4046804-5 s Neutraltheorie (DE-588)4195445-2 s Verzweigungsprozess (DE-588)4188184-9 s 1\p DE-604 https://doi.org/10.1007/978-3-642-51536-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Taïb, Ziad Branching Processes and Neutral Evolution Mathematics Ecology Botany Distribution (Probability theory) Statistics Mathematical and Computational Biology Probability Theory and Stochastic Processes Statistics for Life Sciences, Medicine, Health Sciences Plant Sciences Mathematik Statistik Ökologie Neutraltheorie (DE-588)4195445-2 gnd Populationsgenetik (DE-588)4046804-5 gnd Verzweigungsprozess (DE-588)4188184-9 gnd |
subject_GND | (DE-588)4195445-2 (DE-588)4046804-5 (DE-588)4188184-9 |
title | Branching Processes and Neutral Evolution |
title_auth | Branching Processes and Neutral Evolution |
title_exact_search | Branching Processes and Neutral Evolution |
title_full | Branching Processes and Neutral Evolution by Ziad Taïb |
title_fullStr | Branching Processes and Neutral Evolution by Ziad Taïb |
title_full_unstemmed | Branching Processes and Neutral Evolution by Ziad Taïb |
title_short | Branching Processes and Neutral Evolution |
title_sort | branching processes and neutral evolution |
topic | Mathematics Ecology Botany Distribution (Probability theory) Statistics Mathematical and Computational Biology Probability Theory and Stochastic Processes Statistics for Life Sciences, Medicine, Health Sciences Plant Sciences Mathematik Statistik Ökologie Neutraltheorie (DE-588)4195445-2 gnd Populationsgenetik (DE-588)4046804-5 gnd Verzweigungsprozess (DE-588)4188184-9 gnd |
topic_facet | Mathematics Ecology Botany Distribution (Probability theory) Statistics Mathematical and Computational Biology Probability Theory and Stochastic Processes Statistics for Life Sciences, Medicine, Health Sciences Plant Sciences Mathematik Statistik Ökologie Neutraltheorie Populationsgenetik Verzweigungsprozess |
url | https://doi.org/10.1007/978-3-642-51536-1 |
work_keys_str_mv | AT taibziad branchingprocessesandneutralevolution |