Harmonic Analysis on Semi-Simple Lie Groups I:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1972
|
Schriftenreihe: | Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete
188 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The representation theory of locally compact groups has been vigorously developed in the past twenty-five years or so; of the various branches of this theory, one of the most attractive (and formidable) is the representation theory of semi-simple Lie groups which, to a great extent, is the creation of a single man: Harish-Chandra. The chief objective of the present volume and its immediate successor is to provide a reasonably self-contained introduction to Harish-Chandra's theory. Granting certain basic prerequisites (cf. infra), we have made an effort to give full details and complete proofs of the theorems on which the theory rests. The structure of this volume and its successor is as follows. Each book is divided into chapters; each chapter is divided into sections; each section into numbers. We then use the decimal system of reference; for example, 1. 3. 2 refers to the second number in the third section of the first chapter. Theorems, Propositions, Lemmas, and Corollaries are listed consecutively throughout any given number. Numbers which are set in fine print may be omitted at a first reading. There are a variety of Examples scattered throughout the text; the reader, if he is so inclined, can view them as exercises ad libitum. The Appendices to the text collect certain ancillary results which will be used on and off in the systematic exposition; a reference of the form A2 |
Beschreibung: | 1 Online-Ressource (XVI, 532 p) |
ISBN: | 9783642502750 9783642502774 |
DOI: | 10.1007/978-3-642-50275-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422561 | ||
003 | DE-604 | ||
005 | 20240626 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1972 |||| o||u| ||||||eng d | ||
020 | |a 9783642502750 |c Online |9 978-3-642-50275-0 | ||
020 | |a 9783642502774 |c Print |9 978-3-642-50277-4 | ||
024 | 7 | |a 10.1007/978-3-642-50275-0 |2 doi | |
035 | |a (OCoLC)905486632 | ||
035 | |a (DE-599)BVBBV042422561 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Warner, Garth |e Verfasser |4 aut | |
245 | 1 | 0 | |a Harmonic Analysis on Semi-Simple Lie Groups I |c by Garth Warner |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1972 | |
300 | |a 1 Online-Ressource (XVI, 532 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete |v 188 | |
500 | |a The representation theory of locally compact groups has been vigorously developed in the past twenty-five years or so; of the various branches of this theory, one of the most attractive (and formidable) is the representation theory of semi-simple Lie groups which, to a great extent, is the creation of a single man: Harish-Chandra. The chief objective of the present volume and its immediate successor is to provide a reasonably self-contained introduction to Harish-Chandra's theory. Granting certain basic prerequisites (cf. infra), we have made an effort to give full details and complete proofs of the theorems on which the theory rests. The structure of this volume and its successor is as follows. Each book is divided into chapters; each chapter is divided into sections; each section into numbers. We then use the decimal system of reference; for example, 1. 3. 2 refers to the second number in the third section of the first chapter. Theorems, Propositions, Lemmas, and Corollaries are listed consecutively throughout any given number. Numbers which are set in fine print may be omitted at a first reading. There are a variety of Examples scattered throughout the text; the reader, if he is so inclined, can view them as exercises ad libitum. The Appendices to the text collect certain ancillary results which will be used on and off in the systematic exposition; a reference of the form A2 | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
830 | 0 | |a Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete |v 188 |w (DE-604)BV049758308 |9 188 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-50275-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive |
Datensatz im Suchindex
_version_ | 1805079046316359680 |
---|---|
adam_text | |
any_adam_object | |
author | Warner, Garth |
author_facet | Warner, Garth |
author_role | aut |
author_sort | Warner, Garth |
author_variant | g w gw |
building | Verbundindex |
bvnumber | BV042422561 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)905486632 (DE-599)BVBBV042422561 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-50275-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nmm a2200000zcb4500</leader><controlfield tag="001">BV042422561</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240626</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1972 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642502750</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-50275-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642502774</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-50277-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-50275-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)905486632</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422561</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Warner, Garth</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Harmonic Analysis on Semi-Simple Lie Groups I</subfield><subfield code="c">by Garth Warner</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1972</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XVI, 532 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete</subfield><subfield code="v">188</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The representation theory of locally compact groups has been vigorously developed in the past twenty-five years or so; of the various branches of this theory, one of the most attractive (and formidable) is the representation theory of semi-simple Lie groups which, to a great extent, is the creation of a single man: Harish-Chandra. The chief objective of the present volume and its immediate successor is to provide a reasonably self-contained introduction to Harish-Chandra's theory. Granting certain basic prerequisites (cf. infra), we have made an effort to give full details and complete proofs of the theorems on which the theory rests. The structure of this volume and its successor is as follows. Each book is divided into chapters; each chapter is divided into sections; each section into numbers. We then use the decimal system of reference; for example, 1. 3. 2 refers to the second number in the third section of the first chapter. Theorems, Propositions, Lemmas, and Corollaries are listed consecutively throughout any given number. Numbers which are set in fine print may be omitted at a first reading. There are a variety of Examples scattered throughout the text; the reader, if he is so inclined, can view them as exercises ad libitum. The Appendices to the text collect certain ancillary results which will be used on and off in the systematic exposition; a reference of the form A2</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete</subfield><subfield code="v">188</subfield><subfield code="w">(DE-604)BV049758308</subfield><subfield code="9">188</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-50275-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield></record></collection> |
id | DE-604.BV042422561 |
illustrated | Not Illustrated |
indexdate | 2024-07-20T06:38:45Z |
institution | BVB |
isbn | 9783642502750 9783642502774 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857978 |
oclc_num | 905486632 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XVI, 532 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1972 |
publishDateSearch | 1972 |
publishDateSort | 1972 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series | Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete |
series2 | Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete |
spelling | Warner, Garth Verfasser aut Harmonic Analysis on Semi-Simple Lie Groups I by Garth Warner Berlin, Heidelberg Springer Berlin Heidelberg 1972 1 Online-Ressource (XVI, 532 p) txt rdacontent c rdamedia cr rdacarrier Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete 188 The representation theory of locally compact groups has been vigorously developed in the past twenty-five years or so; of the various branches of this theory, one of the most attractive (and formidable) is the representation theory of semi-simple Lie groups which, to a great extent, is the creation of a single man: Harish-Chandra. The chief objective of the present volume and its immediate successor is to provide a reasonably self-contained introduction to Harish-Chandra's theory. Granting certain basic prerequisites (cf. infra), we have made an effort to give full details and complete proofs of the theorems on which the theory rests. The structure of this volume and its successor is as follows. Each book is divided into chapters; each chapter is divided into sections; each section into numbers. We then use the decimal system of reference; for example, 1. 3. 2 refers to the second number in the third section of the first chapter. Theorems, Propositions, Lemmas, and Corollaries are listed consecutively throughout any given number. Numbers which are set in fine print may be omitted at a first reading. There are a variety of Examples scattered throughout the text; the reader, if he is so inclined, can view them as exercises ad libitum. The Appendices to the text collect certain ancillary results which will be used on and off in the systematic exposition; a reference of the form A2 Mathematics Mathematics, general Mathematik Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete 188 (DE-604)BV049758308 188 https://doi.org/10.1007/978-3-642-50275-0 Verlag Volltext |
spellingShingle | Warner, Garth Harmonic Analysis on Semi-Simple Lie Groups I Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete Mathematics Mathematics, general Mathematik |
title | Harmonic Analysis on Semi-Simple Lie Groups I |
title_auth | Harmonic Analysis on Semi-Simple Lie Groups I |
title_exact_search | Harmonic Analysis on Semi-Simple Lie Groups I |
title_full | Harmonic Analysis on Semi-Simple Lie Groups I by Garth Warner |
title_fullStr | Harmonic Analysis on Semi-Simple Lie Groups I by Garth Warner |
title_full_unstemmed | Harmonic Analysis on Semi-Simple Lie Groups I by Garth Warner |
title_short | Harmonic Analysis on Semi-Simple Lie Groups I |
title_sort | harmonic analysis on semi simple lie groups i |
topic | Mathematics Mathematics, general Mathematik |
topic_facet | Mathematics Mathematics, general Mathematik |
url | https://doi.org/10.1007/978-3-642-50275-0 |
volume_link | (DE-604)BV049758308 |
work_keys_str_mv | AT warnergarth harmonicanalysisonsemisimpleliegroupsi |