Theory of Symmetric Lattices:
Saved in:
Bibliographic Details
Main Author: Maeda, Fumitomo (Author)
Format: Electronic eBook
Language:English
Published: Berlin, Heidelberg Springer Berlin Heidelberg 1970
Series:Die Grundlehren der mathematischen Wissenschaften, in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete 173
Subjects:
Online Access:Volltext
Item Description:Of central importance in this book is the concept of modularity in lattices. A lattice is said to be modular if every pair of its elements is a modular pair. The properties of modular lattices have been carefully investigated by numerous mathematicians, including 1. von Neumann who introduced the important study of continuous geometry. Continu­ ous geometry is a generalization of projective geometry; the latter is atomistic and discrete dimensional while the former may include a continuous dimensional part. Meanwhile there are many non-modular lattices. Among these there exist some lattices wherein modularity is symmetric, that is, if a pair (a,b) is modular then so is (b,a). These lattices are said to be M-sym­ metric, and their study forms an extension of the theory of modular lattices. An important example of an M-symmetric lattice arises from affine geometry. Here the lattice of affine sets is upper continuous, atomistic, and has the covering property. Such a lattice, called a matroid lattice, can be shown to be M-symmetric. We have a deep theory of parallelism in an affine matroid lattice, a special kind of matroid lattice. Further­ more we can show that this lattice has a modular extension
Physical Description:1 Online-Ressource (XII, 194 p)
ISBN:9783642462481
9783642462504
ISSN:0072-7830
DOI:10.1007/978-3-642-46248-1

There is no print copy available.

Interlibrary loan Place Request Caution: Not in THWS collection! Get full text