Theory of Symmetric Lattices:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1970
|
Schriftenreihe: | Die Grundlehren der mathematischen Wissenschaften, in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete
173 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Of central importance in this book is the concept of modularity in lattices. A lattice is said to be modular if every pair of its elements is a modular pair. The properties of modular lattices have been carefully investigated by numerous mathematicians, including 1. von Neumann who introduced the important study of continuous geometry. Continu ous geometry is a generalization of projective geometry; the latter is atomistic and discrete dimensional while the former may include a continuous dimensional part. Meanwhile there are many non-modular lattices. Among these there exist some lattices wherein modularity is symmetric, that is, if a pair (a,b) is modular then so is (b,a). These lattices are said to be M-sym metric, and their study forms an extension of the theory of modular lattices. An important example of an M-symmetric lattice arises from affine geometry. Here the lattice of affine sets is upper continuous, atomistic, and has the covering property. Such a lattice, called a matroid lattice, can be shown to be M-symmetric. We have a deep theory of parallelism in an affine matroid lattice, a special kind of matroid lattice. Further more we can show that this lattice has a modular extension |
Beschreibung: | 1 Online-Ressource (XII, 194 p) |
ISBN: | 9783642462481 9783642462504 |
ISSN: | 0072-7830 |
DOI: | 10.1007/978-3-642-46248-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422506 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1970 |||| o||u| ||||||eng d | ||
020 | |a 9783642462481 |c Online |9 978-3-642-46248-1 | ||
020 | |a 9783642462504 |c Print |9 978-3-642-46250-4 | ||
024 | 7 | |a 10.1007/978-3-642-46248-1 |2 doi | |
035 | |a (OCoLC)1186278130 | ||
035 | |a (DE-599)BVBBV042422506 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Maeda, Fumitomo |e Verfasser |4 aut | |
245 | 1 | 0 | |a Theory of Symmetric Lattices |c by Fumitomo Maeda, Shûichirô Maeda |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1970 | |
300 | |a 1 Online-Ressource (XII, 194 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Die Grundlehren der mathematischen Wissenschaften, in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete |v 173 |x 0072-7830 | |
500 | |a Of central importance in this book is the concept of modularity in lattices. A lattice is said to be modular if every pair of its elements is a modular pair. The properties of modular lattices have been carefully investigated by numerous mathematicians, including 1. von Neumann who introduced the important study of continuous geometry. Continu ous geometry is a generalization of projective geometry; the latter is atomistic and discrete dimensional while the former may include a continuous dimensional part. Meanwhile there are many non-modular lattices. Among these there exist some lattices wherein modularity is symmetric, that is, if a pair (a,b) is modular then so is (b,a). These lattices are said to be M-sym metric, and their study forms an extension of the theory of modular lattices. An important example of an M-symmetric lattice arises from affine geometry. Here the lattice of affine sets is upper continuous, atomistic, and has the covering property. Such a lattice, called a matroid lattice, can be shown to be M-symmetric. We have a deep theory of parallelism in an affine matroid lattice, a special kind of matroid lattice. Further more we can show that this lattice has a modular extension | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Symmetrie |0 (DE-588)4058724-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Verbandstheorie |0 (DE-588)4127072-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Gitter |g Mathematik |0 (DE-588)4157375-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Symmetrie |0 (DE-588)4058724-1 |D s |
689 | 0 | 1 | |a Verbandstheorie |0 (DE-588)4127072-1 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Gitter |g Mathematik |0 (DE-588)4157375-4 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Maeda, Shûichirô |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-46248-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857923 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153097066381312 |
---|---|
any_adam_object | |
author | Maeda, Fumitomo |
author_facet | Maeda, Fumitomo |
author_role | aut |
author_sort | Maeda, Fumitomo |
author_variant | f m fm |
building | Verbundindex |
bvnumber | BV042422506 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1186278130 (DE-599)BVBBV042422506 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-46248-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03223nmm a2200529zcb4500</leader><controlfield tag="001">BV042422506</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1970 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642462481</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-46248-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642462504</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-46250-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-46248-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1186278130</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422506</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Maeda, Fumitomo</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Theory of Symmetric Lattices</subfield><subfield code="c">by Fumitomo Maeda, Shûichirô Maeda</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1970</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 194 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Die Grundlehren der mathematischen Wissenschaften, in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete</subfield><subfield code="v">173</subfield><subfield code="x">0072-7830</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Of central importance in this book is the concept of modularity in lattices. A lattice is said to be modular if every pair of its elements is a modular pair. The properties of modular lattices have been carefully investigated by numerous mathematicians, including 1. von Neumann who introduced the important study of continuous geometry. Continu ous geometry is a generalization of projective geometry; the latter is atomistic and discrete dimensional while the former may include a continuous dimensional part. Meanwhile there are many non-modular lattices. Among these there exist some lattices wherein modularity is symmetric, that is, if a pair (a,b) is modular then so is (b,a). These lattices are said to be M-sym metric, and their study forms an extension of the theory of modular lattices. An important example of an M-symmetric lattice arises from affine geometry. Here the lattice of affine sets is upper continuous, atomistic, and has the covering property. Such a lattice, called a matroid lattice, can be shown to be M-symmetric. We have a deep theory of parallelism in an affine matroid lattice, a special kind of matroid lattice. Further more we can show that this lattice has a modular extension</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symmetrie</subfield><subfield code="0">(DE-588)4058724-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Verbandstheorie</subfield><subfield code="0">(DE-588)4127072-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gitter</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4157375-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Symmetrie</subfield><subfield code="0">(DE-588)4058724-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Verbandstheorie</subfield><subfield code="0">(DE-588)4127072-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Gitter</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4157375-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maeda, Shûichirô</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-46248-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857923</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422506 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783642462481 9783642462504 |
issn | 0072-7830 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857923 |
oclc_num | 1186278130 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 194 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1970 |
publishDateSearch | 1970 |
publishDateSort | 1970 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Die Grundlehren der mathematischen Wissenschaften, in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete |
spelling | Maeda, Fumitomo Verfasser aut Theory of Symmetric Lattices by Fumitomo Maeda, Shûichirô Maeda Berlin, Heidelberg Springer Berlin Heidelberg 1970 1 Online-Ressource (XII, 194 p) txt rdacontent c rdamedia cr rdacarrier Die Grundlehren der mathematischen Wissenschaften, in Einzeldarstellungen mit besonderer Berücksichtigung der Anwendungsgebiete 173 0072-7830 Of central importance in this book is the concept of modularity in lattices. A lattice is said to be modular if every pair of its elements is a modular pair. The properties of modular lattices have been carefully investigated by numerous mathematicians, including 1. von Neumann who introduced the important study of continuous geometry. Continu ous geometry is a generalization of projective geometry; the latter is atomistic and discrete dimensional while the former may include a continuous dimensional part. Meanwhile there are many non-modular lattices. Among these there exist some lattices wherein modularity is symmetric, that is, if a pair (a,b) is modular then so is (b,a). These lattices are said to be M-sym metric, and their study forms an extension of the theory of modular lattices. An important example of an M-symmetric lattice arises from affine geometry. Here the lattice of affine sets is upper continuous, atomistic, and has the covering property. Such a lattice, called a matroid lattice, can be shown to be M-symmetric. We have a deep theory of parallelism in an affine matroid lattice, a special kind of matroid lattice. Further more we can show that this lattice has a modular extension Mathematics Mathematics, general Mathematik Symmetrie (DE-588)4058724-1 gnd rswk-swf Verbandstheorie (DE-588)4127072-1 gnd rswk-swf Gitter Mathematik (DE-588)4157375-4 gnd rswk-swf Symmetrie (DE-588)4058724-1 s Verbandstheorie (DE-588)4127072-1 s 1\p DE-604 Gitter Mathematik (DE-588)4157375-4 s 2\p DE-604 Maeda, Shûichirô Sonstige oth https://doi.org/10.1007/978-3-642-46248-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Maeda, Fumitomo Theory of Symmetric Lattices Mathematics Mathematics, general Mathematik Symmetrie (DE-588)4058724-1 gnd Verbandstheorie (DE-588)4127072-1 gnd Gitter Mathematik (DE-588)4157375-4 gnd |
subject_GND | (DE-588)4058724-1 (DE-588)4127072-1 (DE-588)4157375-4 |
title | Theory of Symmetric Lattices |
title_auth | Theory of Symmetric Lattices |
title_exact_search | Theory of Symmetric Lattices |
title_full | Theory of Symmetric Lattices by Fumitomo Maeda, Shûichirô Maeda |
title_fullStr | Theory of Symmetric Lattices by Fumitomo Maeda, Shûichirô Maeda |
title_full_unstemmed | Theory of Symmetric Lattices by Fumitomo Maeda, Shûichirô Maeda |
title_short | Theory of Symmetric Lattices |
title_sort | theory of symmetric lattices |
topic | Mathematics Mathematics, general Mathematik Symmetrie (DE-588)4058724-1 gnd Verbandstheorie (DE-588)4127072-1 gnd Gitter Mathematik (DE-588)4157375-4 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Symmetrie Verbandstheorie Gitter Mathematik |
url | https://doi.org/10.1007/978-3-642-46248-1 |
work_keys_str_mv | AT maedafumitomo theoryofsymmetriclattices AT maedashuichiro theoryofsymmetriclattices |