Mathematical Topics in Population Genetics:
Gespeichert in:
Weitere Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1970
|
Schriftenreihe: | Biomathematics
1 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | A basic method of analyzing particulate gene systems is the probabilistic and statistical analyses. Mendel himself could not escape from an application of elementary probability analysis although he might have been unaware of this fact. Even Galtonian geneticists in the late 1800's and the early 1900's pursued problems of heredity by means of mathematics and mathematical statistics. They failed to find the principles of heredity, but succeeded to establish an interdisciplinary area between mathematics and biology, which we call now Biometrics, Biometry, or Applied Statistics. A monumental work in the field of popUlation genetics was published by the late R. A. Fisher, who analyzed "the correlation among relatives" based on Mendelian gene theory (1918). This theoretical analysis overcame "so-called blending inheritance" theory, and the orientation of Galtonian explanations for correlations among relatives for quantitative traits rapidly changed. We must not forget the experimental works of Johanson (1909) and Nilsson-Ehle (1909) which supported Mendelian gene theory. However, a large scale experiment for a test of segregation and linkage of Mendelian genes affecting quantitative traits was, probably for the first time, conducted by K. Mather and his associates and Panse in the 1940's |
Beschreibung: | 1 Online-Ressource (X, 400 p) |
ISBN: | 9783642462443 9783642462467 |
ISSN: | 0067-8821 |
DOI: | 10.1007/978-3-642-46244-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422505 | ||
003 | DE-604 | ||
005 | 20171215 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1970 |||| o||u| ||||||eng d | ||
020 | |a 9783642462443 |c Online |9 978-3-642-46244-3 | ||
020 | |a 9783642462467 |c Print |9 978-3-642-46246-7 | ||
024 | 7 | |a 10.1007/978-3-642-46244-3 |2 doi | |
035 | |a (OCoLC)1185254214 | ||
035 | |a (DE-599)BVBBV042422505 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
245 | 1 | 0 | |a Mathematical Topics in Population Genetics |c edited by Ken-ichi Kojima |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1970 | |
300 | |a 1 Online-Ressource (X, 400 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Biomathematics |v 1 |x 0067-8821 | |
500 | |a A basic method of analyzing particulate gene systems is the probabilistic and statistical analyses. Mendel himself could not escape from an application of elementary probability analysis although he might have been unaware of this fact. Even Galtonian geneticists in the late 1800's and the early 1900's pursued problems of heredity by means of mathematics and mathematical statistics. They failed to find the principles of heredity, but succeeded to establish an interdisciplinary area between mathematics and biology, which we call now Biometrics, Biometry, or Applied Statistics. A monumental work in the field of popUlation genetics was published by the late R. A. Fisher, who analyzed "the correlation among relatives" based on Mendelian gene theory (1918). This theoretical analysis overcame "so-called blending inheritance" theory, and the orientation of Galtonian explanations for correlations among relatives for quantitative traits rapidly changed. We must not forget the experimental works of Johanson (1909) and Nilsson-Ehle (1909) which supported Mendelian gene theory. However, a large scale experiment for a test of segregation and linkage of Mendelian genes affecting quantitative traits was, probably for the first time, conducted by K. Mather and his associates and Panse in the 1940's | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Populationsgenetik |0 (DE-588)4046804-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mathematik |0 (DE-588)4037944-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Populationsgenetik |0 (DE-588)4046804-5 |D s |
689 | 0 | 1 | |a Mathematik |0 (DE-588)4037944-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Kojima, Ken-ichi |4 edt | |
830 | 0 | |a Biomathematics |v 1 |w (DE-604)BV000894631 |9 1 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-46244-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857922 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153097056944128 |
---|---|
any_adam_object | |
author2 | Kojima, Ken-ichi |
author2_role | edt |
author2_variant | k i k kik |
author_facet | Kojima, Ken-ichi |
building | Verbundindex |
bvnumber | BV042422505 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1185254214 (DE-599)BVBBV042422505 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-46244-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02960nmm a2200481zcb4500</leader><controlfield tag="001">BV042422505</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171215 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1970 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642462443</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-46244-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642462467</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-46246-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-46244-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1185254214</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422505</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Mathematical Topics in Population Genetics</subfield><subfield code="c">edited by Ken-ichi Kojima</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1970</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 400 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Biomathematics</subfield><subfield code="v">1</subfield><subfield code="x">0067-8821</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">A basic method of analyzing particulate gene systems is the probabilistic and statistical analyses. Mendel himself could not escape from an application of elementary probability analysis although he might have been unaware of this fact. Even Galtonian geneticists in the late 1800's and the early 1900's pursued problems of heredity by means of mathematics and mathematical statistics. They failed to find the principles of heredity, but succeeded to establish an interdisciplinary area between mathematics and biology, which we call now Biometrics, Biometry, or Applied Statistics. A monumental work in the field of popUlation genetics was published by the late R. A. Fisher, who analyzed "the correlation among relatives" based on Mendelian gene theory (1918). This theoretical analysis overcame "so-called blending inheritance" theory, and the orientation of Galtonian explanations for correlations among relatives for quantitative traits rapidly changed. We must not forget the experimental works of Johanson (1909) and Nilsson-Ehle (1909) which supported Mendelian gene theory. However, a large scale experiment for a test of segregation and linkage of Mendelian genes affecting quantitative traits was, probably for the first time, conducted by K. Mather and his associates and Panse in the 1940's</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Populationsgenetik</subfield><subfield code="0">(DE-588)4046804-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Populationsgenetik</subfield><subfield code="0">(DE-588)4046804-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mathematik</subfield><subfield code="0">(DE-588)4037944-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kojima, Ken-ichi</subfield><subfield code="4">edt</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Biomathematics</subfield><subfield code="v">1</subfield><subfield code="w">(DE-604)BV000894631</subfield><subfield code="9">1</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-46244-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857922</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422505 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783642462443 9783642462467 |
issn | 0067-8821 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857922 |
oclc_num | 1185254214 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 400 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1970 |
publishDateSearch | 1970 |
publishDateSort | 1970 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series | Biomathematics |
series2 | Biomathematics |
spelling | Mathematical Topics in Population Genetics edited by Ken-ichi Kojima Berlin, Heidelberg Springer Berlin Heidelberg 1970 1 Online-Ressource (X, 400 p) txt rdacontent c rdamedia cr rdacarrier Biomathematics 1 0067-8821 A basic method of analyzing particulate gene systems is the probabilistic and statistical analyses. Mendel himself could not escape from an application of elementary probability analysis although he might have been unaware of this fact. Even Galtonian geneticists in the late 1800's and the early 1900's pursued problems of heredity by means of mathematics and mathematical statistics. They failed to find the principles of heredity, but succeeded to establish an interdisciplinary area between mathematics and biology, which we call now Biometrics, Biometry, or Applied Statistics. A monumental work in the field of popUlation genetics was published by the late R. A. Fisher, who analyzed "the correlation among relatives" based on Mendelian gene theory (1918). This theoretical analysis overcame "so-called blending inheritance" theory, and the orientation of Galtonian explanations for correlations among relatives for quantitative traits rapidly changed. We must not forget the experimental works of Johanson (1909) and Nilsson-Ehle (1909) which supported Mendelian gene theory. However, a large scale experiment for a test of segregation and linkage of Mendelian genes affecting quantitative traits was, probably for the first time, conducted by K. Mather and his associates and Panse in the 1940's Mathematics Mathematics, general Mathematik Populationsgenetik (DE-588)4046804-5 gnd rswk-swf Mathematik (DE-588)4037944-9 gnd rswk-swf Populationsgenetik (DE-588)4046804-5 s Mathematik (DE-588)4037944-9 s 1\p DE-604 Kojima, Ken-ichi edt Biomathematics 1 (DE-604)BV000894631 1 https://doi.org/10.1007/978-3-642-46244-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Mathematical Topics in Population Genetics Biomathematics Mathematics Mathematics, general Mathematik Populationsgenetik (DE-588)4046804-5 gnd Mathematik (DE-588)4037944-9 gnd |
subject_GND | (DE-588)4046804-5 (DE-588)4037944-9 |
title | Mathematical Topics in Population Genetics |
title_auth | Mathematical Topics in Population Genetics |
title_exact_search | Mathematical Topics in Population Genetics |
title_full | Mathematical Topics in Population Genetics edited by Ken-ichi Kojima |
title_fullStr | Mathematical Topics in Population Genetics edited by Ken-ichi Kojima |
title_full_unstemmed | Mathematical Topics in Population Genetics edited by Ken-ichi Kojima |
title_short | Mathematical Topics in Population Genetics |
title_sort | mathematical topics in population genetics |
topic | Mathematics Mathematics, general Mathematik Populationsgenetik (DE-588)4046804-5 gnd Mathematik (DE-588)4037944-9 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Populationsgenetik |
url | https://doi.org/10.1007/978-3-642-46244-3 |
volume_link | (DE-604)BV000894631 |
work_keys_str_mv | AT kojimakenichi mathematicaltopicsinpopulationgenetics |