Linear Partial Differential Operators:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
1963
|
Schriftenreihe: | Die Grundlehren der Mathematischen Wissenschaften, In Einzeldarstellungen mit Besonderer Berücksichtigung der Anwendungsgebiete
116 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The aim of this book is to give a systematic study of questions con cerning existence, uniqueness and regularity of solutions of linear partial differential equations and boundary problems. Let us note explicitly that this program does not contain such topics as eigenfunction expan sions, although we do give the main facts concerning differential operators which are required for their study. The restriction to linear equations also means that the trouble of achieving minimal assumptions concerning the smoothness of the coefficients of the differential equations studied would not be worth while; we usually assume that they are infinitely differenti able. Functional analysis and distribution theory form the framework for the theory developed here. However, only classical results of functional analysis are used. The terminology employed is that of BOURBAKI. To make the exposition self-contained we present in Chapter I the elements of distribution theory that are required. With the possible exception of section 1.8, this introductory chapter should be bypassed by a reader who is already familiar with distribution theory |
Beschreibung: | 1 Online-Ressource (VIII, 288 p) |
ISBN: | 9783642461750 9783642461774 |
ISSN: | 0072-7830 |
DOI: | 10.1007/978-3-642-46175-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422502 | ||
003 | DE-604 | ||
005 | 20190308 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1963 |||| o||u| ||||||eng d | ||
020 | |a 9783642461750 |c Online |9 978-3-642-46175-0 | ||
020 | |a 9783642461774 |c Print |9 978-3-642-46177-4 | ||
024 | 7 | |a 10.1007/978-3-642-46175-0 |2 doi | |
035 | |a (OCoLC)863935942 | ||
035 | |a (DE-599)BVBBV042422502 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Hörmander, Lars |d 1931-2012 |e Verfasser |0 (DE-588)105823449 |4 aut | |
245 | 1 | 0 | |a Linear Partial Differential Operators |c by Lars Hörmander |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 1963 | |
300 | |a 1 Online-Ressource (VIII, 288 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Die Grundlehren der Mathematischen Wissenschaften, In Einzeldarstellungen mit Besonderer Berücksichtigung der Anwendungsgebiete |v 116 |x 0072-7830 | |
500 | |a The aim of this book is to give a systematic study of questions con cerning existence, uniqueness and regularity of solutions of linear partial differential equations and boundary problems. Let us note explicitly that this program does not contain such topics as eigenfunction expan sions, although we do give the main facts concerning differential operators which are required for their study. The restriction to linear equations also means that the trouble of achieving minimal assumptions concerning the smoothness of the coefficients of the differential equations studied would not be worth while; we usually assume that they are infinitely differenti able. Functional analysis and distribution theory form the framework for the theory developed here. However, only classical results of functional analysis are used. The terminology employed is that of BOURBAKI. To make the exposition self-contained we present in Chapter I the elements of distribution theory that are required. With the possible exception of section 1.8, this introductory chapter should be bypassed by a reader who is already familiar with distribution theory | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Linearer Differentialoperator |0 (DE-588)4167717-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineare partielle Differentialgleichung |0 (DE-588)4167708-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialoperator |0 (DE-588)4012251-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Distribution |g Funktionalanalysis |0 (DE-588)4070505-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Linearer partieller Differentialoperator |0 (DE-588)4167722-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Partieller Differentialoperator |0 (DE-588)4173439-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Partieller Differentialoperator |0 (DE-588)4173439-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Linearer Differentialoperator |0 (DE-588)4167717-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Lineare partielle Differentialgleichung |0 (DE-588)4167708-0 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Linearer partieller Differentialoperator |0 (DE-588)4167722-5 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
689 | 4 | 0 | |a Differentialoperator |0 (DE-588)4012251-7 |D s |
689 | 4 | |8 5\p |5 DE-604 | |
689 | 5 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 5 | |8 6\p |5 DE-604 | |
689 | 6 | 0 | |a Distribution |g Funktionalanalysis |0 (DE-588)4070505-5 |D s |
689 | 6 | |8 7\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-46175-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857919 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 7\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153097048555520 |
---|---|
any_adam_object | |
author | Hörmander, Lars 1931-2012 |
author_GND | (DE-588)105823449 |
author_facet | Hörmander, Lars 1931-2012 |
author_role | aut |
author_sort | Hörmander, Lars 1931-2012 |
author_variant | l h lh |
building | Verbundindex |
bvnumber | BV042422502 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863935942 (DE-599)BVBBV042422502 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-46175-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04407nmm a2200733zcb4500</leader><controlfield tag="001">BV042422502</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190308 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1963 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642461750</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-46175-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642461774</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-46177-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-46175-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863935942</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422502</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hörmander, Lars</subfield><subfield code="d">1931-2012</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)105823449</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Linear Partial Differential Operators</subfield><subfield code="c">by Lars Hörmander</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">1963</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 288 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Die Grundlehren der Mathematischen Wissenschaften, In Einzeldarstellungen mit Besonderer Berücksichtigung der Anwendungsgebiete</subfield><subfield code="v">116</subfield><subfield code="x">0072-7830</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The aim of this book is to give a systematic study of questions con cerning existence, uniqueness and regularity of solutions of linear partial differential equations and boundary problems. Let us note explicitly that this program does not contain such topics as eigenfunction expan sions, although we do give the main facts concerning differential operators which are required for their study. The restriction to linear equations also means that the trouble of achieving minimal assumptions concerning the smoothness of the coefficients of the differential equations studied would not be worth while; we usually assume that they are infinitely differenti able. Functional analysis and distribution theory form the framework for the theory developed here. However, only classical results of functional analysis are used. The terminology employed is that of BOURBAKI. To make the exposition self-contained we present in Chapter I the elements of distribution theory that are required. With the possible exception of section 1.8, this introductory chapter should be bypassed by a reader who is already familiar with distribution theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Linearer Differentialoperator</subfield><subfield code="0">(DE-588)4167717-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4167708-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialoperator</subfield><subfield code="0">(DE-588)4012251-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Distribution</subfield><subfield code="g">Funktionalanalysis</subfield><subfield code="0">(DE-588)4070505-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Linearer partieller Differentialoperator</subfield><subfield code="0">(DE-588)4167722-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partieller Differentialoperator</subfield><subfield code="0">(DE-588)4173439-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partieller Differentialoperator</subfield><subfield code="0">(DE-588)4173439-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Linearer Differentialoperator</subfield><subfield code="0">(DE-588)4167717-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Lineare partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4167708-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Linearer partieller Differentialoperator</subfield><subfield code="0">(DE-588)4167722-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Differentialoperator</subfield><subfield code="0">(DE-588)4012251-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="6" ind2="0"><subfield code="a">Distribution</subfield><subfield code="g">Funktionalanalysis</subfield><subfield code="0">(DE-588)4070505-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="6" ind2=" "><subfield code="8">7\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-46175-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857919</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">7\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422502 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783642461750 9783642461774 |
issn | 0072-7830 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857919 |
oclc_num | 863935942 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 288 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1963 |
publishDateSearch | 1963 |
publishDateSort | 1963 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Die Grundlehren der Mathematischen Wissenschaften, In Einzeldarstellungen mit Besonderer Berücksichtigung der Anwendungsgebiete |
spelling | Hörmander, Lars 1931-2012 Verfasser (DE-588)105823449 aut Linear Partial Differential Operators by Lars Hörmander Berlin, Heidelberg Springer Berlin Heidelberg 1963 1 Online-Ressource (VIII, 288 p) txt rdacontent c rdamedia cr rdacarrier Die Grundlehren der Mathematischen Wissenschaften, In Einzeldarstellungen mit Besonderer Berücksichtigung der Anwendungsgebiete 116 0072-7830 The aim of this book is to give a systematic study of questions con cerning existence, uniqueness and regularity of solutions of linear partial differential equations and boundary problems. Let us note explicitly that this program does not contain such topics as eigenfunction expan sions, although we do give the main facts concerning differential operators which are required for their study. The restriction to linear equations also means that the trouble of achieving minimal assumptions concerning the smoothness of the coefficients of the differential equations studied would not be worth while; we usually assume that they are infinitely differenti able. Functional analysis and distribution theory form the framework for the theory developed here. However, only classical results of functional analysis are used. The terminology employed is that of BOURBAKI. To make the exposition self-contained we present in Chapter I the elements of distribution theory that are required. With the possible exception of section 1.8, this introductory chapter should be bypassed by a reader who is already familiar with distribution theory Mathematics Mathematics, general Mathematik Linearer Differentialoperator (DE-588)4167717-1 gnd rswk-swf Lineare partielle Differentialgleichung (DE-588)4167708-0 gnd rswk-swf Differentialoperator (DE-588)4012251-7 gnd rswk-swf Distribution Funktionalanalysis (DE-588)4070505-5 gnd rswk-swf Linearer partieller Differentialoperator (DE-588)4167722-5 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Partieller Differentialoperator (DE-588)4173439-7 gnd rswk-swf Partieller Differentialoperator (DE-588)4173439-7 s 1\p DE-604 Linearer Differentialoperator (DE-588)4167717-1 s 2\p DE-604 Lineare partielle Differentialgleichung (DE-588)4167708-0 s 3\p DE-604 Linearer partieller Differentialoperator (DE-588)4167722-5 s 4\p DE-604 Differentialoperator (DE-588)4012251-7 s 5\p DE-604 Partielle Differentialgleichung (DE-588)4044779-0 s 6\p DE-604 Distribution Funktionalanalysis (DE-588)4070505-5 s 7\p DE-604 https://doi.org/10.1007/978-3-642-46175-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 6\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 7\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hörmander, Lars 1931-2012 Linear Partial Differential Operators Mathematics Mathematics, general Mathematik Linearer Differentialoperator (DE-588)4167717-1 gnd Lineare partielle Differentialgleichung (DE-588)4167708-0 gnd Differentialoperator (DE-588)4012251-7 gnd Distribution Funktionalanalysis (DE-588)4070505-5 gnd Linearer partieller Differentialoperator (DE-588)4167722-5 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd Partieller Differentialoperator (DE-588)4173439-7 gnd |
subject_GND | (DE-588)4167717-1 (DE-588)4167708-0 (DE-588)4012251-7 (DE-588)4070505-5 (DE-588)4167722-5 (DE-588)4044779-0 (DE-588)4173439-7 |
title | Linear Partial Differential Operators |
title_auth | Linear Partial Differential Operators |
title_exact_search | Linear Partial Differential Operators |
title_full | Linear Partial Differential Operators by Lars Hörmander |
title_fullStr | Linear Partial Differential Operators by Lars Hörmander |
title_full_unstemmed | Linear Partial Differential Operators by Lars Hörmander |
title_short | Linear Partial Differential Operators |
title_sort | linear partial differential operators |
topic | Mathematics Mathematics, general Mathematik Linearer Differentialoperator (DE-588)4167717-1 gnd Lineare partielle Differentialgleichung (DE-588)4167708-0 gnd Differentialoperator (DE-588)4012251-7 gnd Distribution Funktionalanalysis (DE-588)4070505-5 gnd Linearer partieller Differentialoperator (DE-588)4167722-5 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd Partieller Differentialoperator (DE-588)4173439-7 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Linearer Differentialoperator Lineare partielle Differentialgleichung Differentialoperator Distribution Funktionalanalysis Linearer partieller Differentialoperator Partielle Differentialgleichung Partieller Differentialoperator |
url | https://doi.org/10.1007/978-3-642-46175-0 |
work_keys_str_mv | AT hormanderlars linearpartialdifferentialoperators |