Riemannian Geometry:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2004
|
Ausgabe: | Third Edition |
Schriftenreihe: | Universitext
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Many years have passed since the ?rst edition. However, the encouragements of various readers and friends have persuaded us to write this third edition. During these years, Riemannian Geometry has undergone many dramatic - velopments. Here is not the place to relate them. The reader can consult for instance the recent book [Br5]. of our "mentor" Marcel Berger. However,R- mannian Geometry is not only a fascinating ?eld in itself. It has proved to be a precious tool in other parts of mathematics. In this respect, we can quote the major breakthroughs in four-dimensional topology which occurred in the eighties and the nineties of the last century (see for instance [L2]). These have been followed, quite recently, by a possibly successful approach to the Poincar' e conjecture. In another direction, Geometric Group Theory, a very active ?eld nowadays (cf. [Gr6]), borrows many ideas from Riemannian or metric geometry. Butletusstophoggingthelimelight.Thisisjustatextbook.Wehopethatour point of view of working intrinsically with manifolds as early as possible, and testingeverynewnotiononaseriesofrecurrentexamples(seetheintroduction to the ?rst edition for a detailed description), can be useful both to beginners and to mathematicians from other ?elds, wanting to acquire some feeling for the subject |
Beschreibung: | 1 Online-Ressource (XV, 322 p) |
ISBN: | 9783642188558 9783540204930 |
ISSN: | 0172-5939 |
DOI: | 10.1007/978-3-642-18855-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422480 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 |||| o||u| ||||||eng d | ||
020 | |a 9783642188558 |c Online |9 978-3-642-18855-8 | ||
020 | |a 9783540204930 |c Print |9 978-3-540-20493-0 | ||
024 | 7 | |a 10.1007/978-3-642-18855-8 |2 doi | |
035 | |a (OCoLC)1184426529 | ||
035 | |a (DE-599)BVBBV042422480 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.36 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Gallot, Sylvestre |e Verfasser |4 aut | |
245 | 1 | 0 | |a Riemannian Geometry |c by Sylvestre Gallot, Dominique Hulin, Jacques Lafontaine |
250 | |a Third Edition | ||
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2004 | |
300 | |a 1 Online-Ressource (XV, 322 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Universitext |x 0172-5939 | |
500 | |a Many years have passed since the ?rst edition. However, the encouragements of various readers and friends have persuaded us to write this third edition. During these years, Riemannian Geometry has undergone many dramatic - velopments. Here is not the place to relate them. The reader can consult for instance the recent book [Br5]. of our "mentor" Marcel Berger. However,R- mannian Geometry is not only a fascinating ?eld in itself. It has proved to be a precious tool in other parts of mathematics. In this respect, we can quote the major breakthroughs in four-dimensional topology which occurred in the eighties and the nineties of the last century (see for instance [L2]). These have been followed, quite recently, by a possibly successful approach to the Poincar' e conjecture. In another direction, Geometric Group Theory, a very active ?eld nowadays (cf. [Gr6]), borrows many ideas from Riemannian or metric geometry. Butletusstophoggingthelimelight.Thisisjustatextbook.Wehopethatour point of view of working intrinsically with manifolds as early as possible, and testingeverynewnotiononaseriesofrecurrentexamples(seetheintroduction to the ?rst edition for a detailed description), can be useful both to beginners and to mathematicians from other ?elds, wanting to acquire some feeling for the subject | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Riemannsche Geometrie |0 (DE-588)4128462-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Riemannsche Geometrie |0 (DE-588)4128462-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Hulin, Dominique |e Sonstige |4 oth | |
700 | 1 | |a Lafontaine, Jacques |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-18855-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857897 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096992980992 |
---|---|
any_adam_object | |
author | Gallot, Sylvestre |
author_facet | Gallot, Sylvestre |
author_role | aut |
author_sort | Gallot, Sylvestre |
author_variant | s g sg |
building | Verbundindex |
bvnumber | BV042422480 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184426529 (DE-599)BVBBV042422480 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-18855-8 |
edition | Third Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02996nmm a2200493zc 4500</leader><controlfield tag="001">BV042422480</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642188558</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-18855-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540204930</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-20493-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-18855-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184426529</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422480</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gallot, Sylvestre</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Riemannian Geometry</subfield><subfield code="c">by Sylvestre Gallot, Dominique Hulin, Jacques Lafontaine</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Third Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XV, 322 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Universitext</subfield><subfield code="x">0172-5939</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Many years have passed since the ?rst edition. However, the encouragements of various readers and friends have persuaded us to write this third edition. During these years, Riemannian Geometry has undergone many dramatic - velopments. Here is not the place to relate them. The reader can consult for instance the recent book [Br5]. of our "mentor" Marcel Berger. However,R- mannian Geometry is not only a fascinating ?eld in itself. It has proved to be a precious tool in other parts of mathematics. In this respect, we can quote the major breakthroughs in four-dimensional topology which occurred in the eighties and the nineties of the last century (see for instance [L2]). These have been followed, quite recently, by a possibly successful approach to the Poincar' e conjecture. In another direction, Geometric Group Theory, a very active ?eld nowadays (cf. [Gr6]), borrows many ideas from Riemannian or metric geometry. Butletusstophoggingthelimelight.Thisisjustatextbook.Wehopethatour point of view of working intrinsically with manifolds as early as possible, and testingeverynewnotiononaseriesofrecurrentexamples(seetheintroduction to the ?rst edition for a detailed description), can be useful both to beginners and to mathematicians from other ?elds, wanting to acquire some feeling for the subject</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hulin, Dominique</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lafontaine, Jacques</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-18855-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857897</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422480 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783642188558 9783540204930 |
issn | 0172-5939 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857897 |
oclc_num | 1184426529 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XV, 322 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Universitext |
spelling | Gallot, Sylvestre Verfasser aut Riemannian Geometry by Sylvestre Gallot, Dominique Hulin, Jacques Lafontaine Third Edition Berlin, Heidelberg Springer Berlin Heidelberg 2004 1 Online-Ressource (XV, 322 p) txt rdacontent c rdamedia cr rdacarrier Universitext 0172-5939 Many years have passed since the ?rst edition. However, the encouragements of various readers and friends have persuaded us to write this third edition. During these years, Riemannian Geometry has undergone many dramatic - velopments. Here is not the place to relate them. The reader can consult for instance the recent book [Br5]. of our "mentor" Marcel Berger. However,R- mannian Geometry is not only a fascinating ?eld in itself. It has proved to be a precious tool in other parts of mathematics. In this respect, we can quote the major breakthroughs in four-dimensional topology which occurred in the eighties and the nineties of the last century (see for instance [L2]). These have been followed, quite recently, by a possibly successful approach to the Poincar' e conjecture. In another direction, Geometric Group Theory, a very active ?eld nowadays (cf. [Gr6]), borrows many ideas from Riemannian or metric geometry. Butletusstophoggingthelimelight.Thisisjustatextbook.Wehopethatour point of view of working intrinsically with manifolds as early as possible, and testingeverynewnotiononaseriesofrecurrentexamples(seetheintroduction to the ?rst edition for a detailed description), can be useful both to beginners and to mathematicians from other ?elds, wanting to acquire some feeling for the subject Mathematics Global differential geometry Differential Geometry Mathematik Riemannsche Geometrie (DE-588)4128462-8 gnd rswk-swf Riemannsche Geometrie (DE-588)4128462-8 s 1\p DE-604 Hulin, Dominique Sonstige oth Lafontaine, Jacques Sonstige oth https://doi.org/10.1007/978-3-642-18855-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Gallot, Sylvestre Riemannian Geometry Mathematics Global differential geometry Differential Geometry Mathematik Riemannsche Geometrie (DE-588)4128462-8 gnd |
subject_GND | (DE-588)4128462-8 |
title | Riemannian Geometry |
title_auth | Riemannian Geometry |
title_exact_search | Riemannian Geometry |
title_full | Riemannian Geometry by Sylvestre Gallot, Dominique Hulin, Jacques Lafontaine |
title_fullStr | Riemannian Geometry by Sylvestre Gallot, Dominique Hulin, Jacques Lafontaine |
title_full_unstemmed | Riemannian Geometry by Sylvestre Gallot, Dominique Hulin, Jacques Lafontaine |
title_short | Riemannian Geometry |
title_sort | riemannian geometry |
topic | Mathematics Global differential geometry Differential Geometry Mathematik Riemannsche Geometrie (DE-588)4128462-8 gnd |
topic_facet | Mathematics Global differential geometry Differential Geometry Mathematik Riemannsche Geometrie |
url | https://doi.org/10.1007/978-3-642-18855-8 |
work_keys_str_mv | AT gallotsylvestre riemanniangeometry AT hulindominique riemanniangeometry AT lafontainejacques riemanniangeometry |