A Panoramic View of Riemannian Geometry:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2003
|
Schlagworte: | |
Online-Zugang: | UBY01 Volltext |
Beschreibung: | Riemannian geometry has today become a vast and important subject. This new book of Marcel Berger sets out to introduce readers to most of the living topics of the field and convey them quickly to the main results known to date. These results are stated without detailed proofs but the main ideas involved are described and motivated. This enables the reader to obtain a sweeping panoramic view of almost the entirety of the field. However, since a Riemannian manifold is, even initially, a subtle object, appealing to highly non-natural concepts, the first three chapters devote themselves to introducing the various concepts and tools of Riemannian geometry in the most natural and motivating way, following in particular Gauss and Riemann |
Beschreibung: | 1 Online-Ressource (XXIII, 824 p) |
ISBN: | 9783642182457 9783642621215 |
DOI: | 10.1007/978-3-642-18245-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422464 | ||
003 | DE-604 | ||
005 | 20221213 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 |||| o||u| ||||||eng d | ||
020 | |a 9783642182457 |c Online |9 978-3-642-18245-7 | ||
020 | |a 9783642621215 |c Print |9 978-3-642-62121-5 | ||
024 | 7 | |a 10.1007/978-3-642-18245-7 |2 doi | |
035 | |a (ZDB-30-PQE)6475321 | ||
035 | |a (OCoLC)863668810 | ||
035 | |a (DE-599)BVBBV042422464 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 |a DE-706 | ||
082 | 0 | |a 516.36 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Berger, Marcel |d 1927-2016 |e Verfasser |0 (DE-588)12047672X |4 aut | |
245 | 1 | 0 | |a A Panoramic View of Riemannian Geometry |c by Marcel Berger |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2003 | |
300 | |a 1 Online-Ressource (XXIII, 824 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Riemannian geometry has today become a vast and important subject. This new book of Marcel Berger sets out to introduce readers to most of the living topics of the field and convey them quickly to the main results known to date. These results are stated without detailed proofs but the main ideas involved are described and motivated. This enables the reader to obtain a sweeping panoramic view of almost the entirety of the field. However, since a Riemannian manifold is, even initially, a subtle object, appealing to highly non-natural concepts, the first three chapters devote themselves to introducing the various concepts and tools of Riemannian geometry in the most natural and motivating way, following in particular Gauss and Riemann | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Riemannsche Geometrie |0 (DE-588)4128462-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Riemannsche Geometrie |0 (DE-588)4128462-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-18245-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-30-PQE |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857881 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
966 | e | |u https://ebookcentral.proquest.com/lib/unibwm/detail.action?docID=6475321 |l UBY01 |p ZDB-30-PQE |q UBY01_Einzelkauf22 |x Aggregator |3 Volltext |
Datensatz im Suchindex
_version_ | 1804153096965718016 |
---|---|
any_adam_object | |
author | Berger, Marcel 1927-2016 |
author_GND | (DE-588)12047672X |
author_facet | Berger, Marcel 1927-2016 |
author_role | aut |
author_sort | Berger, Marcel 1927-2016 |
author_variant | m b mb |
building | Verbundindex |
bvnumber | BV042422464 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-30-PQE ZDB-2-BAE |
ctrlnum | (ZDB-30-PQE)6475321 (OCoLC)863668810 (DE-599)BVBBV042422464 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-18245-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02480nmm a2200469zc 4500</leader><controlfield tag="001">BV042422464</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20221213 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642182457</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-18245-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642621215</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-62121-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-18245-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(ZDB-30-PQE)6475321</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863668810</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422464</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-706</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Berger, Marcel</subfield><subfield code="d">1927-2016</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)12047672X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A Panoramic View of Riemannian Geometry</subfield><subfield code="c">by Marcel Berger</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXIII, 824 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Riemannian geometry has today become a vast and important subject. This new book of Marcel Berger sets out to introduce readers to most of the living topics of the field and convey them quickly to the main results known to date. These results are stated without detailed proofs but the main ideas involved are described and motivated. This enables the reader to obtain a sweeping panoramic view of almost the entirety of the field. However, since a Riemannian manifold is, even initially, a subtle object, appealing to highly non-natural concepts, the first three chapters devote themselves to introducing the various concepts and tools of Riemannian geometry in the most natural and motivating way, following in particular Gauss and Riemann</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-18245-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-30-PQE</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857881</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="966" ind1="e" ind2=" "><subfield code="u">https://ebookcentral.proquest.com/lib/unibwm/detail.action?docID=6475321</subfield><subfield code="l">UBY01</subfield><subfield code="p">ZDB-30-PQE</subfield><subfield code="q">UBY01_Einzelkauf22</subfield><subfield code="x">Aggregator</subfield><subfield code="3">Volltext</subfield></datafield></record></collection> |
id | DE-604.BV042422464 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783642182457 9783642621215 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857881 |
oclc_num | 863668810 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 DE-706 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 DE-706 |
physical | 1 Online-Ressource (XXIII, 824 p) |
psigel | ZDB-2-SMA ZDB-30-PQE ZDB-2-BAE ZDB-2-SMA_Archive ZDB-30-PQE UBY01_Einzelkauf22 |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
spelling | Berger, Marcel 1927-2016 Verfasser (DE-588)12047672X aut A Panoramic View of Riemannian Geometry by Marcel Berger Berlin, Heidelberg Springer Berlin Heidelberg 2003 1 Online-Ressource (XXIII, 824 p) txt rdacontent c rdamedia cr rdacarrier Riemannian geometry has today become a vast and important subject. This new book of Marcel Berger sets out to introduce readers to most of the living topics of the field and convey them quickly to the main results known to date. These results are stated without detailed proofs but the main ideas involved are described and motivated. This enables the reader to obtain a sweeping panoramic view of almost the entirety of the field. However, since a Riemannian manifold is, even initially, a subtle object, appealing to highly non-natural concepts, the first three chapters devote themselves to introducing the various concepts and tools of Riemannian geometry in the most natural and motivating way, following in particular Gauss and Riemann Mathematics Global differential geometry Differential Geometry Mathematik Riemannsche Geometrie (DE-588)4128462-8 gnd rswk-swf Riemannsche Geometrie (DE-588)4128462-8 s 1\p DE-604 https://doi.org/10.1007/978-3-642-18245-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Berger, Marcel 1927-2016 A Panoramic View of Riemannian Geometry Mathematics Global differential geometry Differential Geometry Mathematik Riemannsche Geometrie (DE-588)4128462-8 gnd |
subject_GND | (DE-588)4128462-8 |
title | A Panoramic View of Riemannian Geometry |
title_auth | A Panoramic View of Riemannian Geometry |
title_exact_search | A Panoramic View of Riemannian Geometry |
title_full | A Panoramic View of Riemannian Geometry by Marcel Berger |
title_fullStr | A Panoramic View of Riemannian Geometry by Marcel Berger |
title_full_unstemmed | A Panoramic View of Riemannian Geometry by Marcel Berger |
title_short | A Panoramic View of Riemannian Geometry |
title_sort | a panoramic view of riemannian geometry |
topic | Mathematics Global differential geometry Differential Geometry Mathematik Riemannsche Geometrie (DE-588)4128462-8 gnd |
topic_facet | Mathematics Global differential geometry Differential Geometry Mathematik Riemannsche Geometrie |
url | https://doi.org/10.1007/978-3-642-18245-7 |
work_keys_str_mv | AT bergermarcel apanoramicviewofriemanniangeometry |