Adaptive Multiscale Schemes for Conservation Laws:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2003
|
Schriftenreihe: | Lecture Notes in Computational Science and Engineering
27 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | During the last decade enormous progress has been achieved in the field of computational fluid dynamics. This became possible by the development of robust and high-order accurate numerical algorithms as well as the construction of enhanced computer hardware, e. g. , parallel and vector architectures, workstation clusters. All these improvements allow the numerical simulation of real world problems arising for instance in automotive and aviation industry. Nowadays numerical simulations may be considered as an indispensable tool in the design of engineering devices complementing or avoiding expensive experiments. In order to obtain qualitatively as well as quantitatively reliable results the complexity of the applications continuously increases due to the demand of resolving more details of the real world configuration as well as taking better physical models into account, e. g. , turbulence, real gas or aeroelasticity. Although the speed and memory of computer hardware are currently doubled approximately every 18 months according to Moore's law, this will not be sufficient to cope with the increasing complexity required by uniform discretizations. The future task will be to optimize the utilization of the available resources. Therefore new numerical algorithms have to be developed with a computational complexity that can be termed nearly optimal in the sense that storage and computational expense remain proportional to the "inherent complexity" (a term that will be made clearer later) problem. This leads to adaptive concepts which correspond in a natural way to unstructured grids |
Beschreibung: | 1 Online-Ressource (XIV, 184p) |
ISBN: | 9783642181641 9783540443254 |
ISSN: | 1439-7358 |
DOI: | 10.1007/978-3-642-18164-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422461 | ||
003 | DE-604 | ||
005 | 20170913 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 |||| o||u| ||||||eng d | ||
020 | |a 9783642181641 |c Online |9 978-3-642-18164-1 | ||
020 | |a 9783540443254 |c Print |9 978-3-540-44325-4 | ||
024 | 7 | |a 10.1007/978-3-642-18164-1 |2 doi | |
035 | |a (OCoLC)725568547 | ||
035 | |a (DE-599)BVBBV042422461 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 518 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Müller, Siegfried |e Verfasser |4 aut | |
245 | 1 | 0 | |a Adaptive Multiscale Schemes for Conservation Laws |c by Siegfried Müller |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2003 | |
300 | |a 1 Online-Ressource (XIV, 184p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Lecture Notes in Computational Science and Engineering |v 27 |x 1439-7358 | |
500 | |a During the last decade enormous progress has been achieved in the field of computational fluid dynamics. This became possible by the development of robust and high-order accurate numerical algorithms as well as the construction of enhanced computer hardware, e. g. , parallel and vector architectures, workstation clusters. All these improvements allow the numerical simulation of real world problems arising for instance in automotive and aviation industry. Nowadays numerical simulations may be considered as an indispensable tool in the design of engineering devices complementing or avoiding expensive experiments. In order to obtain qualitatively as well as quantitatively reliable results the complexity of the applications continuously increases due to the demand of resolving more details of the real world configuration as well as taking better physical models into account, e. g. , turbulence, real gas or aeroelasticity. Although the speed and memory of computer hardware are currently doubled approximately every 18 months according to Moore's law, this will not be sufficient to cope with the increasing complexity required by uniform discretizations. The future task will be to optimize the utilization of the available resources. Therefore new numerical algorithms have to be developed with a computational complexity that can be termed nearly optimal in the sense that storage and computational expense remain proportional to the "inherent complexity" (a term that will be made clearer later) problem. This leads to adaptive concepts which correspond in a natural way to unstructured grids | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Computer science / Mathematics | |
650 | 4 | |a Engineering mathematics | |
650 | 4 | |a Computational Mathematics and Numerical Analysis | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Appl.Mathematics/Computational Methods of Engineering | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Adaptives Verfahren |0 (DE-588)4310560-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Erhaltungssatz |0 (DE-588)4131214-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Mehrskalenanalyse |0 (DE-588)4416235-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Erhaltungssatz |0 (DE-588)4131214-4 |D s |
689 | 0 | 1 | |a Mehrskalenanalyse |0 (DE-588)4416235-2 |D s |
689 | 0 | 2 | |a Adaptives Verfahren |0 (DE-588)4310560-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
830 | 0 | |a Lecture Notes in Computational Science and Engineering |v 27 |w (DE-604)BV011386476 |9 27 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-18164-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857878 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096941600768 |
---|---|
any_adam_object | |
author | Müller, Siegfried |
author_facet | Müller, Siegfried |
author_role | aut |
author_sort | Müller, Siegfried |
author_variant | s m sm |
building | Verbundindex |
bvnumber | BV042422461 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)725568547 (DE-599)BVBBV042422461 |
dewey-full | 518 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518 |
dewey-search | 518 |
dewey-sort | 3518 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-18164-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03774nmm a2200565zcb4500</leader><controlfield tag="001">BV042422461</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170913 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642181641</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-18164-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540443254</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-44325-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-18164-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)725568547</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422461</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Müller, Siegfried</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Adaptive Multiscale Schemes for Conservation Laws</subfield><subfield code="c">by Siegfried Müller</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 184p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Lecture Notes in Computational Science and Engineering</subfield><subfield code="v">27</subfield><subfield code="x">1439-7358</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">During the last decade enormous progress has been achieved in the field of computational fluid dynamics. This became possible by the development of robust and high-order accurate numerical algorithms as well as the construction of enhanced computer hardware, e. g. , parallel and vector architectures, workstation clusters. All these improvements allow the numerical simulation of real world problems arising for instance in automotive and aviation industry. Nowadays numerical simulations may be considered as an indispensable tool in the design of engineering devices complementing or avoiding expensive experiments. In order to obtain qualitatively as well as quantitatively reliable results the complexity of the applications continuously increases due to the demand of resolving more details of the real world configuration as well as taking better physical models into account, e. g. , turbulence, real gas or aeroelasticity. Although the speed and memory of computer hardware are currently doubled approximately every 18 months according to Moore's law, this will not be sufficient to cope with the increasing complexity required by uniform discretizations. The future task will be to optimize the utilization of the available resources. Therefore new numerical algorithms have to be developed with a computational complexity that can be termed nearly optimal in the sense that storage and computational expense remain proportional to the "inherent complexity" (a term that will be made clearer later) problem. This leads to adaptive concepts which correspond in a natural way to unstructured grids</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Appl.Mathematics/Computational Methods of Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Adaptives Verfahren</subfield><subfield code="0">(DE-588)4310560-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Erhaltungssatz</subfield><subfield code="0">(DE-588)4131214-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrskalenanalyse</subfield><subfield code="0">(DE-588)4416235-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Erhaltungssatz</subfield><subfield code="0">(DE-588)4131214-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Mehrskalenanalyse</subfield><subfield code="0">(DE-588)4416235-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Adaptives Verfahren</subfield><subfield code="0">(DE-588)4310560-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Lecture Notes in Computational Science and Engineering</subfield><subfield code="v">27</subfield><subfield code="w">(DE-604)BV011386476</subfield><subfield code="9">27</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-18164-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857878</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422461 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783642181641 9783540443254 |
issn | 1439-7358 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857878 |
oclc_num | 725568547 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIV, 184p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series | Lecture Notes in Computational Science and Engineering |
series2 | Lecture Notes in Computational Science and Engineering |
spelling | Müller, Siegfried Verfasser aut Adaptive Multiscale Schemes for Conservation Laws by Siegfried Müller Berlin, Heidelberg Springer Berlin Heidelberg 2003 1 Online-Ressource (XIV, 184p) txt rdacontent c rdamedia cr rdacarrier Lecture Notes in Computational Science and Engineering 27 1439-7358 During the last decade enormous progress has been achieved in the field of computational fluid dynamics. This became possible by the development of robust and high-order accurate numerical algorithms as well as the construction of enhanced computer hardware, e. g. , parallel and vector architectures, workstation clusters. All these improvements allow the numerical simulation of real world problems arising for instance in automotive and aviation industry. Nowadays numerical simulations may be considered as an indispensable tool in the design of engineering devices complementing or avoiding expensive experiments. In order to obtain qualitatively as well as quantitatively reliable results the complexity of the applications continuously increases due to the demand of resolving more details of the real world configuration as well as taking better physical models into account, e. g. , turbulence, real gas or aeroelasticity. Although the speed and memory of computer hardware are currently doubled approximately every 18 months according to Moore's law, this will not be sufficient to cope with the increasing complexity required by uniform discretizations. The future task will be to optimize the utilization of the available resources. Therefore new numerical algorithms have to be developed with a computational complexity that can be termed nearly optimal in the sense that storage and computational expense remain proportional to the "inherent complexity" (a term that will be made clearer later) problem. This leads to adaptive concepts which correspond in a natural way to unstructured grids Mathematics Computer science / Mathematics Engineering mathematics Computational Mathematics and Numerical Analysis Theoretical, Mathematical and Computational Physics Appl.Mathematics/Computational Methods of Engineering Informatik Mathematik Adaptives Verfahren (DE-588)4310560-9 gnd rswk-swf Erhaltungssatz (DE-588)4131214-4 gnd rswk-swf Mehrskalenanalyse (DE-588)4416235-2 gnd rswk-swf Erhaltungssatz (DE-588)4131214-4 s Mehrskalenanalyse (DE-588)4416235-2 s Adaptives Verfahren (DE-588)4310560-9 s 1\p DE-604 Lecture Notes in Computational Science and Engineering 27 (DE-604)BV011386476 27 https://doi.org/10.1007/978-3-642-18164-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Müller, Siegfried Adaptive Multiscale Schemes for Conservation Laws Lecture Notes in Computational Science and Engineering Mathematics Computer science / Mathematics Engineering mathematics Computational Mathematics and Numerical Analysis Theoretical, Mathematical and Computational Physics Appl.Mathematics/Computational Methods of Engineering Informatik Mathematik Adaptives Verfahren (DE-588)4310560-9 gnd Erhaltungssatz (DE-588)4131214-4 gnd Mehrskalenanalyse (DE-588)4416235-2 gnd |
subject_GND | (DE-588)4310560-9 (DE-588)4131214-4 (DE-588)4416235-2 |
title | Adaptive Multiscale Schemes for Conservation Laws |
title_auth | Adaptive Multiscale Schemes for Conservation Laws |
title_exact_search | Adaptive Multiscale Schemes for Conservation Laws |
title_full | Adaptive Multiscale Schemes for Conservation Laws by Siegfried Müller |
title_fullStr | Adaptive Multiscale Schemes for Conservation Laws by Siegfried Müller |
title_full_unstemmed | Adaptive Multiscale Schemes for Conservation Laws by Siegfried Müller |
title_short | Adaptive Multiscale Schemes for Conservation Laws |
title_sort | adaptive multiscale schemes for conservation laws |
topic | Mathematics Computer science / Mathematics Engineering mathematics Computational Mathematics and Numerical Analysis Theoretical, Mathematical and Computational Physics Appl.Mathematics/Computational Methods of Engineering Informatik Mathematik Adaptives Verfahren (DE-588)4310560-9 gnd Erhaltungssatz (DE-588)4131214-4 gnd Mehrskalenanalyse (DE-588)4416235-2 gnd |
topic_facet | Mathematics Computer science / Mathematics Engineering mathematics Computational Mathematics and Numerical Analysis Theoretical, Mathematical and Computational Physics Appl.Mathematics/Computational Methods of Engineering Informatik Mathematik Adaptives Verfahren Erhaltungssatz Mehrskalenanalyse |
url | https://doi.org/10.1007/978-3-642-18164-1 |
volume_link | (DE-604)BV011386476 |
work_keys_str_mv | AT mullersiegfried adaptivemultiscaleschemesforconservationlaws |