Matrix Iterative Analysis:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2000
|
Schriftenreihe: | Springer Series in Computational Mathematics
27 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This is the softcover reprint of a very popular hardcover edition, a revised version of the first edition, originally published by Prentice Hall in 1962 and regarded as a classic in its field. In some places, newer research results, e.g. results on weak regular splittings, have been incorporated in the revision, and in other places, new material has been added in the chapters, as well as at the end of chapters, in the form of additional up-to-date references and some recent theorems to give the reader some newer directions to pursue. The material in the new chapters is basically self-contained and more exercises have been provided for the readers. While the original version was more linear algebra oriented, the revision attempts to emphasize tools from other areas, such as approximation theory and conformal mapping theory, to access newer results of interest. The book should be of great interest to researchers and graduate students in the field of numerical analysis |
Beschreibung: | 1 Online-Ressource (X, 358 p) |
ISBN: | 9783642051562 9783642051548 |
ISSN: | 0179-3632 |
DOI: | 10.1007/978-3-642-05156-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422451 | ||
003 | DE-604 | ||
005 | 20171124 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2000 |||| o||u| ||||||eng d | ||
020 | |a 9783642051562 |c Online |9 978-3-642-05156-2 | ||
020 | |a 9783642051548 |c Print |9 978-3-642-05154-8 | ||
024 | 7 | |a 10.1007/978-3-642-05156-2 |2 doi | |
035 | |a (OCoLC)1184304784 | ||
035 | |a (DE-599)BVBBV042422451 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 518 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Varga, Richard S. |d 1928-2022 |e Verfasser |0 (DE-588)1068286725 |4 aut | |
245 | 1 | 0 | |a Matrix Iterative Analysis |c by Richard S. Varga |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2000 | |
300 | |a 1 Online-Ressource (X, 358 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Series in Computational Mathematics |v 27 |x 0179-3632 | |
500 | |a This is the softcover reprint of a very popular hardcover edition, a revised version of the first edition, originally published by Prentice Hall in 1962 and regarded as a classic in its field. In some places, newer research results, e.g. results on weak regular splittings, have been incorporated in the revision, and in other places, new material has been added in the chapters, as well as at the end of chapters, in the form of additional up-to-date references and some recent theorems to give the reader some newer directions to pursue. The material in the new chapters is basically self-contained and more exercises have been provided for the readers. While the original version was more linear algebra oriented, the revision attempts to emphasize tools from other areas, such as approximation theory and conformal mapping theory, to access newer results of interest. The book should be of great interest to researchers and graduate students in the field of numerical analysis | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Matrix theory | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a Numerical Analysis | |
650 | 4 | |a Linear and Multilinear Algebras, Matrix Theory | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Matrix |g Mathematik |0 (DE-588)4037968-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Iteration |0 (DE-588)4123457-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Matrizenrechnung |0 (DE-588)4126963-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Matrix |g Mathematik |0 (DE-588)4037968-1 |D s |
689 | 0 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Matrizenrechnung |0 (DE-588)4126963-9 |D s |
689 | 1 | 1 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Matrizenrechnung |0 (DE-588)4126963-9 |D s |
689 | 2 | 1 | |a Iteration |0 (DE-588)4123457-1 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-642-05156-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857868 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096913289216 |
---|---|
any_adam_object | |
author | Varga, Richard S. 1928-2022 |
author_GND | (DE-588)1068286725 |
author_facet | Varga, Richard S. 1928-2022 |
author_role | aut |
author_sort | Varga, Richard S. 1928-2022 |
author_variant | r s v rs rsv |
building | Verbundindex |
bvnumber | BV042422451 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184304784 (DE-599)BVBBV042422451 |
dewey-full | 518 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518 |
dewey-search | 518 |
dewey-sort | 3518 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-642-05156-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03351nmm a2200625zcb4500</leader><controlfield tag="001">BV042422451</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171124 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642051562</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-642-05156-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642051548</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-05154-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-642-05156-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184304784</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422451</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Varga, Richard S.</subfield><subfield code="d">1928-2022</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1068286725</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Matrix Iterative Analysis</subfield><subfield code="c">by Richard S. Varga</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 358 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Series in Computational Mathematics</subfield><subfield code="v">27</subfield><subfield code="x">0179-3632</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This is the softcover reprint of a very popular hardcover edition, a revised version of the first edition, originally published by Prentice Hall in 1962 and regarded as a classic in its field. In some places, newer research results, e.g. results on weak regular splittings, have been incorporated in the revision, and in other places, new material has been added in the chapters, as well as at the end of chapters, in the form of additional up-to-date references and some recent theorems to give the reader some newer directions to pursue. The material in the new chapters is basically self-contained and more exercises have been provided for the readers. While the original version was more linear algebra oriented, the revision attempts to emphasize tools from other areas, such as approximation theory and conformal mapping theory, to access newer results of interest. The book should be of great interest to researchers and graduate students in the field of numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Matrix theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Linear and Multilinear Algebras, Matrix Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matrix</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4037968-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Iteration</subfield><subfield code="0">(DE-588)4123457-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Matrizenrechnung</subfield><subfield code="0">(DE-588)4126963-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Matrix</subfield><subfield code="g">Mathematik</subfield><subfield code="0">(DE-588)4037968-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Matrizenrechnung</subfield><subfield code="0">(DE-588)4126963-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Matrizenrechnung</subfield><subfield code="0">(DE-588)4126963-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Iteration</subfield><subfield code="0">(DE-588)4123457-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-642-05156-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857868</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422451 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783642051562 9783642051548 |
issn | 0179-3632 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857868 |
oclc_num | 1184304784 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 358 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Springer Series in Computational Mathematics |
spelling | Varga, Richard S. 1928-2022 Verfasser (DE-588)1068286725 aut Matrix Iterative Analysis by Richard S. Varga Berlin, Heidelberg Springer Berlin Heidelberg 2000 1 Online-Ressource (X, 358 p) txt rdacontent c rdamedia cr rdacarrier Springer Series in Computational Mathematics 27 0179-3632 This is the softcover reprint of a very popular hardcover edition, a revised version of the first edition, originally published by Prentice Hall in 1962 and regarded as a classic in its field. In some places, newer research results, e.g. results on weak regular splittings, have been incorporated in the revision, and in other places, new material has been added in the chapters, as well as at the end of chapters, in the form of additional up-to-date references and some recent theorems to give the reader some newer directions to pursue. The material in the new chapters is basically self-contained and more exercises have been provided for the readers. While the original version was more linear algebra oriented, the revision attempts to emphasize tools from other areas, such as approximation theory and conformal mapping theory, to access newer results of interest. The book should be of great interest to researchers and graduate students in the field of numerical analysis Mathematics Matrix theory Numerical analysis Numerical Analysis Linear and Multilinear Algebras, Matrix Theory Mathematik Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Matrix Mathematik (DE-588)4037968-1 gnd rswk-swf Iteration (DE-588)4123457-1 gnd rswk-swf Matrizenrechnung (DE-588)4126963-9 gnd rswk-swf Matrix Mathematik (DE-588)4037968-1 s Numerisches Verfahren (DE-588)4128130-5 s 1\p DE-604 Matrizenrechnung (DE-588)4126963-9 s 2\p DE-604 Iteration (DE-588)4123457-1 s 3\p DE-604 https://doi.org/10.1007/978-3-642-05156-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Varga, Richard S. 1928-2022 Matrix Iterative Analysis Mathematics Matrix theory Numerical analysis Numerical Analysis Linear and Multilinear Algebras, Matrix Theory Mathematik Numerisches Verfahren (DE-588)4128130-5 gnd Matrix Mathematik (DE-588)4037968-1 gnd Iteration (DE-588)4123457-1 gnd Matrizenrechnung (DE-588)4126963-9 gnd |
subject_GND | (DE-588)4128130-5 (DE-588)4037968-1 (DE-588)4123457-1 (DE-588)4126963-9 |
title | Matrix Iterative Analysis |
title_auth | Matrix Iterative Analysis |
title_exact_search | Matrix Iterative Analysis |
title_full | Matrix Iterative Analysis by Richard S. Varga |
title_fullStr | Matrix Iterative Analysis by Richard S. Varga |
title_full_unstemmed | Matrix Iterative Analysis by Richard S. Varga |
title_short | Matrix Iterative Analysis |
title_sort | matrix iterative analysis |
topic | Mathematics Matrix theory Numerical analysis Numerical Analysis Linear and Multilinear Algebras, Matrix Theory Mathematik Numerisches Verfahren (DE-588)4128130-5 gnd Matrix Mathematik (DE-588)4037968-1 gnd Iteration (DE-588)4123457-1 gnd Matrizenrechnung (DE-588)4126963-9 gnd |
topic_facet | Mathematics Matrix theory Numerical analysis Numerical Analysis Linear and Multilinear Algebras, Matrix Theory Mathematik Numerisches Verfahren Matrix Mathematik Iteration Matrizenrechnung |
url | https://doi.org/10.1007/978-3-642-05156-2 |
work_keys_str_mv | AT vargarichards matrixiterativeanalysis |