Solving Ordinary Differential Equations I: Nonstiff Problems
Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Hairer, Ernst (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Berlin, Heidelberg Springer Berlin Heidelberg 1993
Ausgabe:Second Revised Edition
Schriftenreihe:Springer Series in Computational Mathematics 8
Schlagworte:
Online-Zugang:Volltext
Beschreibung:Preface to the Second Edition The preparation of the second edition has presented a welcome opportunity to improve the first edition by rewriting many sections and by eliminating errors and misprints. In particular we have included new material on – Hamiltonian systems (I.14) and symplectic Runge-Kutta methods (II.16); – dense output for Runge-Kutta (II.6) and extrapolation methods (II.9); – a new Dormand & Prince method of order 8 with dense output (II.5); – parallel Runge-Kutta methods (II.11); – numerical tests for first- and second order systems (II.10 and III.7). Our sincere thanks go to many persons who have helped us with our work: – all readers who kindly drew our attention to several errors and misprints in the first edition; – those who read preliminary versions of the new parts of this edition for their invaluable suggestions: D.J. Higham, L. Jay, P. Kaps, Chr. Lubich, B. Moesli, A. Ostermann, D. Pfenniger, P.J. Prince, and J.M. Sanz-Serna. – our colleague J. Steinig, who read the entire manuscript, for his numerous mathematical suggestions and corrections of English (and Latin!) grammar; – our colleague J.P. Eckmann for his great skill in manipulating Apollo workstations, font tables, and the like; – the staff of the Geneva computing center and of the mathematics library for their constant help; – the planning and production group of Springer-Verlag for numerous suggestions on presentation and style
Beschreibung:1 Online-Ressource (XV, 528 p)
ISBN:9783540788621
9783540566700
ISSN:0179-3632
DOI:10.1007/978-3-540-78862-1

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen