Controlled Diffusion Processes:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
New York, NY
Springer New York
1980
|
Schriftenreihe: | Stochastic Modelling and Applied Probability
14 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book deals with the optimal control of solutions of fully observable Itô-type stochastic differential equations. The validity of the Bellman differential equation for payoff functions is proved and rules for optimal control strategies are developed. Topics include optimal stopping; one dimensional controlled diffusion; the Lp-estimates of stochastic integral distributions; the existence theorem for stochastic equations; the Itô formula for functions; and the Bellman principle, equation, and normalized equation |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9783540709145 9783540709138 |
ISSN: | 0172-4568 |
DOI: | 10.1007/978-3-540-70914-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422405 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1980 |||| o||u| ||||||eng d | ||
020 | |a 9783540709145 |c Online |9 978-3-540-70914-5 | ||
020 | |a 9783540709138 |c Print |9 978-3-540-70913-8 | ||
024 | 7 | |a 10.1007/978-3-540-70914-5 |2 doi | |
035 | |a (OCoLC)1165457031 | ||
035 | |a (DE-599)BVBBV042422405 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Krylov, Nicolai V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Controlled Diffusion Processes |c by Nicolai V. Krylov |
264 | 1 | |a New York, NY |b Springer New York |c 1980 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Stochastic Modelling and Applied Probability |v 14 |x 0172-4568 | |
500 | |a This book deals with the optimal control of solutions of fully observable Itô-type stochastic differential equations. The validity of the Bellman differential equation for payoff functions is proved and rules for optimal control strategies are developed. Topics include optimal stopping; one dimensional controlled diffusion; the Lp-estimates of stochastic integral distributions; the existence theorem for stochastic equations; the Itô formula for functions; and the Bellman principle, equation, and normalized equation | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Stochastische optimale Kontrolle |0 (DE-588)4207850-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastische Kontrolltheorie |0 (DE-588)4263657-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Stochastische Differentialgleichung |0 (DE-588)4057621-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Diffusionsprozess |0 (DE-588)4274463-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kontrolltheorie |0 (DE-588)4032317-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Diffusionsprozess |0 (DE-588)4274463-5 |D s |
689 | 0 | 1 | |a Stochastische Differentialgleichung |0 (DE-588)4057621-8 |D s |
689 | 0 | 2 | |a Stochastische optimale Kontrolle |0 (DE-588)4207850-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Kontrolltheorie |0 (DE-588)4032317-1 |D s |
689 | 1 | 1 | |a Diffusionsprozess |0 (DE-588)4274463-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Diffusionsprozess |0 (DE-588)4274463-5 |D s |
689 | 2 | 1 | |a Stochastische Kontrolltheorie |0 (DE-588)4263657-7 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-540-70914-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857822 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096837791744 |
---|---|
any_adam_object | |
author | Krylov, Nicolai V. |
author_facet | Krylov, Nicolai V. |
author_role | aut |
author_sort | Krylov, Nicolai V. |
author_variant | n v k nv nvk |
building | Verbundindex |
bvnumber | BV042422405 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165457031 (DE-599)BVBBV042422405 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-540-70914-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03007nmm a2200625zcb4500</leader><controlfield tag="001">BV042422405</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1980 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540709145</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-540-70914-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540709138</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-70913-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-540-70914-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165457031</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422405</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Krylov, Nicolai V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Controlled Diffusion Processes</subfield><subfield code="c">by Nicolai V. Krylov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">New York, NY</subfield><subfield code="b">Springer New York</subfield><subfield code="c">1980</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Stochastic Modelling and Applied Probability</subfield><subfield code="v">14</subfield><subfield code="x">0172-4568</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book deals with the optimal control of solutions of fully observable Itô-type stochastic differential equations. The validity of the Bellman differential equation for payoff functions is proved and rules for optimal control strategies are developed. Topics include optimal stopping; one dimensional controlled diffusion; the Lp-estimates of stochastic integral distributions; the existence theorem for stochastic equations; the Itô formula for functions; and the Bellman principle, equation, and normalized equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische optimale Kontrolle</subfield><subfield code="0">(DE-588)4207850-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Kontrolltheorie</subfield><subfield code="0">(DE-588)4263657-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Stochastische Differentialgleichung</subfield><subfield code="0">(DE-588)4057621-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Diffusionsprozess</subfield><subfield code="0">(DE-588)4274463-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kontrolltheorie</subfield><subfield code="0">(DE-588)4032317-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Diffusionsprozess</subfield><subfield code="0">(DE-588)4274463-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Stochastische Differentialgleichung</subfield><subfield code="0">(DE-588)4057621-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Stochastische optimale Kontrolle</subfield><subfield code="0">(DE-588)4207850-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Kontrolltheorie</subfield><subfield code="0">(DE-588)4032317-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Diffusionsprozess</subfield><subfield code="0">(DE-588)4274463-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Diffusionsprozess</subfield><subfield code="0">(DE-588)4274463-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Stochastische Kontrolltheorie</subfield><subfield code="0">(DE-588)4263657-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-540-70914-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857822</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422405 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783540709145 9783540709138 |
issn | 0172-4568 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857822 |
oclc_num | 1165457031 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1980 |
publishDateSearch | 1980 |
publishDateSort | 1980 |
publisher | Springer New York |
record_format | marc |
series2 | Stochastic Modelling and Applied Probability |
spelling | Krylov, Nicolai V. Verfasser aut Controlled Diffusion Processes by Nicolai V. Krylov New York, NY Springer New York 1980 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Stochastic Modelling and Applied Probability 14 0172-4568 This book deals with the optimal control of solutions of fully observable Itô-type stochastic differential equations. The validity of the Bellman differential equation for payoff functions is proved and rules for optimal control strategies are developed. Topics include optimal stopping; one dimensional controlled diffusion; the Lp-estimates of stochastic integral distributions; the existence theorem for stochastic equations; the Itô formula for functions; and the Bellman principle, equation, and normalized equation Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Stochastische optimale Kontrolle (DE-588)4207850-7 gnd rswk-swf Stochastische Kontrolltheorie (DE-588)4263657-7 gnd rswk-swf Stochastische Differentialgleichung (DE-588)4057621-8 gnd rswk-swf Diffusionsprozess (DE-588)4274463-5 gnd rswk-swf Kontrolltheorie (DE-588)4032317-1 gnd rswk-swf Diffusionsprozess (DE-588)4274463-5 s Stochastische Differentialgleichung (DE-588)4057621-8 s Stochastische optimale Kontrolle (DE-588)4207850-7 s 1\p DE-604 Kontrolltheorie (DE-588)4032317-1 s 2\p DE-604 Stochastische Kontrolltheorie (DE-588)4263657-7 s 3\p DE-604 https://doi.org/10.1007/978-3-540-70914-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Krylov, Nicolai V. Controlled Diffusion Processes Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Stochastische optimale Kontrolle (DE-588)4207850-7 gnd Stochastische Kontrolltheorie (DE-588)4263657-7 gnd Stochastische Differentialgleichung (DE-588)4057621-8 gnd Diffusionsprozess (DE-588)4274463-5 gnd Kontrolltheorie (DE-588)4032317-1 gnd |
subject_GND | (DE-588)4207850-7 (DE-588)4263657-7 (DE-588)4057621-8 (DE-588)4274463-5 (DE-588)4032317-1 |
title | Controlled Diffusion Processes |
title_auth | Controlled Diffusion Processes |
title_exact_search | Controlled Diffusion Processes |
title_full | Controlled Diffusion Processes by Nicolai V. Krylov |
title_fullStr | Controlled Diffusion Processes by Nicolai V. Krylov |
title_full_unstemmed | Controlled Diffusion Processes by Nicolai V. Krylov |
title_short | Controlled Diffusion Processes |
title_sort | controlled diffusion processes |
topic | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Stochastische optimale Kontrolle (DE-588)4207850-7 gnd Stochastische Kontrolltheorie (DE-588)4263657-7 gnd Stochastische Differentialgleichung (DE-588)4057621-8 gnd Diffusionsprozess (DE-588)4274463-5 gnd Kontrolltheorie (DE-588)4032317-1 gnd |
topic_facet | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Stochastische optimale Kontrolle Stochastische Kontrolltheorie Stochastische Differentialgleichung Diffusionsprozess Kontrolltheorie |
url | https://doi.org/10.1007/978-3-540-70914-5 |
work_keys_str_mv | AT krylovnicolaiv controlleddiffusionprocesses |