Hamiltonian Methods in the Theory of Solitons:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2007
|
Schriftenreihe: | Springer Series in Soviet Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The main characteristic of this now classic exposition of the inverse scattering method and its applications to soliton theory is its consistent Hamiltonian approach to the theory. The nonlinear Schrödinger equation, rather than the (more usual) KdV equation, is considered as a main example. The investigation of this equation forms the first part of the book. The second part is devoted to such fundamental models as the sine-Gordon equation, Heisenberg equation, Toda lattice, etc, the classification of integrable models and the methods for constructing their solutions |
Beschreibung: | 1 Online-Ressource (IX, 594 p) |
ISBN: | 9783540699699 9783540698432 |
ISSN: | 1431-0821 |
DOI: | 10.1007/978-3-540-69969-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422403 | ||
003 | DE-604 | ||
005 | 20180327 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2007 |||| o||u| ||||||eng d | ||
020 | |a 9783540699699 |c Online |9 978-3-540-69969-9 | ||
020 | |a 9783540698432 |c Print |9 978-3-540-69843-2 | ||
024 | 7 | |a 10.1007/978-3-540-69969-9 |2 doi | |
035 | |a (OCoLC)864108051 | ||
035 | |a (DE-599)BVBBV042422403 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 |a DE-83 | ||
082 | 0 | |a 530.1 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Faddeev, Ludwig D. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Hamiltonian Methods in the Theory of Solitons |c by Ludwig D. Faddeev, Leon A. Takhtajan |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2007 | |
300 | |a 1 Online-Ressource (IX, 594 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Springer Series in Soviet Mathematics |x 1431-0821 | |
500 | |a The main characteristic of this now classic exposition of the inverse scattering method and its applications to soliton theory is its consistent Hamiltonian approach to the theory. The nonlinear Schrödinger equation, rather than the (more usual) KdV equation, is considered as a main example. The investigation of this equation forms the first part of the book. The second part is devoted to such fundamental models as the sine-Gordon equation, Heisenberg equation, Toda lattice, etc, the classification of integrable models and the methods for constructing their solutions | ||
650 | 4 | |a Physics | |
650 | 4 | |a Global analysis | |
650 | 4 | |a Integral equations | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Integral Equations | |
650 | 4 | |a Global Analysis and Analysis on Manifolds | |
650 | 0 | 7 | |a Hamiltonsches System |0 (DE-588)4139943-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Inverse Streutheorie |0 (DE-588)4561758-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Hamilton-Formalismus |0 (DE-588)4376155-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Inverses Streuproblem |0 (DE-588)4027547-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Schrödinger-Gleichung |0 (DE-588)4278277-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Soliton |0 (DE-588)4135213-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Nichtlineare Schrödinger-Gleichung |0 (DE-588)4278277-6 |D s |
689 | 0 | 1 | |a Hamiltonsches System |0 (DE-588)4139943-2 |D s |
689 | 0 | 2 | |a Soliton |0 (DE-588)4135213-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Soliton |0 (DE-588)4135213-0 |D s |
689 | 1 | 1 | |a Inverses Streuproblem |0 (DE-588)4027547-4 |D s |
689 | 1 | 2 | |a Hamilton-Formalismus |0 (DE-588)4376155-0 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Soliton |0 (DE-588)4135213-0 |D s |
689 | 2 | 1 | |a Inverse Streutheorie |0 (DE-588)4561758-2 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
700 | 1 | |a Takhtajan, Leon A. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-540-69969-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857820 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096831500288 |
---|---|
any_adam_object | |
author | Faddeev, Ludwig D. |
author_facet | Faddeev, Ludwig D. |
author_role | aut |
author_sort | Faddeev, Ludwig D. |
author_variant | l d f ld ldf |
building | Verbundindex |
bvnumber | BV042422403 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864108051 (DE-599)BVBBV042422403 |
dewey-full | 530.1 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 530 - Physics |
dewey-raw | 530.1 |
dewey-search | 530.1 |
dewey-sort | 3530.1 |
dewey-tens | 530 - Physics |
discipline | Physik Mathematik |
doi_str_mv | 10.1007/978-3-540-69969-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03407nmm a2200709zc 4500</leader><controlfield tag="001">BV042422403</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20180327 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2007 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540699699</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-540-69969-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540698432</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-540-69843-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-540-69969-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864108051</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422403</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield><subfield code="a">DE-83</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">530.1</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Faddeev, Ludwig D.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hamiltonian Methods in the Theory of Solitons</subfield><subfield code="c">by Ludwig D. Faddeev, Leon A. Takhtajan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2007</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 594 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Springer Series in Soviet Mathematics</subfield><subfield code="x">1431-0821</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The main characteristic of this now classic exposition of the inverse scattering method and its applications to soliton theory is its consistent Hamiltonian approach to the theory. The nonlinear Schrödinger equation, rather than the (more usual) KdV equation, is considered as a main example. The investigation of this equation forms the first part of the book. The second part is devoted to such fundamental models as the sine-Gordon equation, Heisenberg equation, Toda lattice, etc, the classification of integrable models and the methods for constructing their solutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Analysis and Analysis on Manifolds</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inverse Streutheorie</subfield><subfield code="0">(DE-588)4561758-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamilton-Formalismus</subfield><subfield code="0">(DE-588)4376155-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Inverses Streuproblem</subfield><subfield code="0">(DE-588)4027547-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Schrödinger-Gleichung</subfield><subfield code="0">(DE-588)4278277-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Soliton</subfield><subfield code="0">(DE-588)4135213-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Nichtlineare Schrödinger-Gleichung</subfield><subfield code="0">(DE-588)4278277-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Soliton</subfield><subfield code="0">(DE-588)4135213-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Soliton</subfield><subfield code="0">(DE-588)4135213-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Inverses Streuproblem</subfield><subfield code="0">(DE-588)4027547-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Hamilton-Formalismus</subfield><subfield code="0">(DE-588)4376155-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Soliton</subfield><subfield code="0">(DE-588)4135213-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Inverse Streutheorie</subfield><subfield code="0">(DE-588)4561758-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Takhtajan, Leon A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-540-69969-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857820</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422403 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783540699699 9783540698432 |
issn | 1431-0821 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857820 |
oclc_num | 864108051 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 DE-83 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 DE-83 |
physical | 1 Online-Ressource (IX, 594 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2007 |
publishDateSearch | 2007 |
publishDateSort | 2007 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
series2 | Springer Series in Soviet Mathematics |
spelling | Faddeev, Ludwig D. Verfasser aut Hamiltonian Methods in the Theory of Solitons by Ludwig D. Faddeev, Leon A. Takhtajan Berlin, Heidelberg Springer Berlin Heidelberg 2007 1 Online-Ressource (IX, 594 p) txt rdacontent c rdamedia cr rdacarrier Springer Series in Soviet Mathematics 1431-0821 The main characteristic of this now classic exposition of the inverse scattering method and its applications to soliton theory is its consistent Hamiltonian approach to the theory. The nonlinear Schrödinger equation, rather than the (more usual) KdV equation, is considered as a main example. The investigation of this equation forms the first part of the book. The second part is devoted to such fundamental models as the sine-Gordon equation, Heisenberg equation, Toda lattice, etc, the classification of integrable models and the methods for constructing their solutions Physics Global analysis Integral equations Differential equations, partial Theoretical, Mathematical and Computational Physics Partial Differential Equations Integral Equations Global Analysis and Analysis on Manifolds Hamiltonsches System (DE-588)4139943-2 gnd rswk-swf Inverse Streutheorie (DE-588)4561758-2 gnd rswk-swf Hamilton-Formalismus (DE-588)4376155-0 gnd rswk-swf Inverses Streuproblem (DE-588)4027547-4 gnd rswk-swf Nichtlineare Schrödinger-Gleichung (DE-588)4278277-6 gnd rswk-swf Soliton (DE-588)4135213-0 gnd rswk-swf Nichtlineare Schrödinger-Gleichung (DE-588)4278277-6 s Hamiltonsches System (DE-588)4139943-2 s Soliton (DE-588)4135213-0 s 1\p DE-604 Inverses Streuproblem (DE-588)4027547-4 s Hamilton-Formalismus (DE-588)4376155-0 s 2\p DE-604 Inverse Streutheorie (DE-588)4561758-2 s 3\p DE-604 Takhtajan, Leon A. Sonstige oth https://doi.org/10.1007/978-3-540-69969-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Faddeev, Ludwig D. Hamiltonian Methods in the Theory of Solitons Physics Global analysis Integral equations Differential equations, partial Theoretical, Mathematical and Computational Physics Partial Differential Equations Integral Equations Global Analysis and Analysis on Manifolds Hamiltonsches System (DE-588)4139943-2 gnd Inverse Streutheorie (DE-588)4561758-2 gnd Hamilton-Formalismus (DE-588)4376155-0 gnd Inverses Streuproblem (DE-588)4027547-4 gnd Nichtlineare Schrödinger-Gleichung (DE-588)4278277-6 gnd Soliton (DE-588)4135213-0 gnd |
subject_GND | (DE-588)4139943-2 (DE-588)4561758-2 (DE-588)4376155-0 (DE-588)4027547-4 (DE-588)4278277-6 (DE-588)4135213-0 |
title | Hamiltonian Methods in the Theory of Solitons |
title_auth | Hamiltonian Methods in the Theory of Solitons |
title_exact_search | Hamiltonian Methods in the Theory of Solitons |
title_full | Hamiltonian Methods in the Theory of Solitons by Ludwig D. Faddeev, Leon A. Takhtajan |
title_fullStr | Hamiltonian Methods in the Theory of Solitons by Ludwig D. Faddeev, Leon A. Takhtajan |
title_full_unstemmed | Hamiltonian Methods in the Theory of Solitons by Ludwig D. Faddeev, Leon A. Takhtajan |
title_short | Hamiltonian Methods in the Theory of Solitons |
title_sort | hamiltonian methods in the theory of solitons |
topic | Physics Global analysis Integral equations Differential equations, partial Theoretical, Mathematical and Computational Physics Partial Differential Equations Integral Equations Global Analysis and Analysis on Manifolds Hamiltonsches System (DE-588)4139943-2 gnd Inverse Streutheorie (DE-588)4561758-2 gnd Hamilton-Formalismus (DE-588)4376155-0 gnd Inverses Streuproblem (DE-588)4027547-4 gnd Nichtlineare Schrödinger-Gleichung (DE-588)4278277-6 gnd Soliton (DE-588)4135213-0 gnd |
topic_facet | Physics Global analysis Integral equations Differential equations, partial Theoretical, Mathematical and Computational Physics Partial Differential Equations Integral Equations Global Analysis and Analysis on Manifolds Hamiltonsches System Inverse Streutheorie Hamilton-Formalismus Inverses Streuproblem Nichtlineare Schrödinger-Gleichung Soliton |
url | https://doi.org/10.1007/978-3-540-69969-9 |
work_keys_str_mv | AT faddeevludwigd hamiltonianmethodsinthetheoryofsolitons AT takhtajanleona hamiltonianmethodsinthetheoryofsolitons |