Knapsack Problems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Berlin, Heidelberg
Springer Berlin Heidelberg
2004
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Thirteen years have passed since the seminal book on knapsack problems by Martello and Toth appeared. On this occasion a former colleague exclaimed back in 1990: "How can you write 250 pages on the knapsack problem?" Indeed, the definition of the knapsack problem is easily understood even by a non-expert who will not suspect the presence of challenging research topics in this area at the first glance. However, in the last decade a large number of research publications contributed new results for the knapsack problem in all areas of interest such as exact algorithms, heuristics and approximation schemes. Moreover, the extension of the knapsack problem to higher dimensions both in the number of constraints and in the num ber of knapsacks, as well as the modification of the problem structure concerning the available item set and the objective function, leads to a number of interesting variations of practical relevance which were the subject of intensive research during the last few years. Hence, two years ago the idea arose to produce a new monograph covering not only the most recent developments of the standard knapsack problem, but also giving a comprehensive treatment of the whole knapsack family including the siblings such as the subset sum problem and the bounded and unbounded knapsack problem, and also more distant relatives such as multidimensional, multiple, multiple-choice and quadratic knapsack problems in dedicated chapters |
Beschreibung: | 1 Online-Ressource (XX, 548 p) |
ISBN: | 9783540247777 9783642073113 |
DOI: | 10.1007/978-3-540-24777-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422393 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2004 |||| o||u| ||||||eng d | ||
020 | |a 9783540247777 |c Online |9 978-3-540-24777-7 | ||
020 | |a 9783642073113 |c Print |9 978-3-642-07311-3 | ||
024 | 7 | |a 10.1007/978-3-540-24777-7 |2 doi | |
035 | |a (OCoLC)1184504430 | ||
035 | |a (DE-599)BVBBV042422393 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.6 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Kellerer, Hans |e Verfasser |4 aut | |
245 | 1 | 0 | |a Knapsack Problems |c by Hans Kellerer, Ulrich Pferschy, David Pisinger |
264 | 1 | |a Berlin, Heidelberg |b Springer Berlin Heidelberg |c 2004 | |
300 | |a 1 Online-Ressource (XX, 548 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Thirteen years have passed since the seminal book on knapsack problems by Martello and Toth appeared. On this occasion a former colleague exclaimed back in 1990: "How can you write 250 pages on the knapsack problem?" Indeed, the definition of the knapsack problem is easily understood even by a non-expert who will not suspect the presence of challenging research topics in this area at the first glance. However, in the last decade a large number of research publications contributed new results for the knapsack problem in all areas of interest such as exact algorithms, heuristics and approximation schemes. Moreover, the extension of the knapsack problem to higher dimensions both in the number of constraints and in the num ber of knapsacks, as well as the modification of the problem structure concerning the available item set and the objective function, leads to a number of interesting variations of practical relevance which were the subject of intensive research during the last few years. Hence, two years ago the idea arose to produce a new monograph covering not only the most recent developments of the standard knapsack problem, but also giving a comprehensive treatment of the whole knapsack family including the siblings such as the subset sum problem and the bounded and unbounded knapsack problem, and also more distant relatives such as multidimensional, multiple, multiple-choice and quadratic knapsack problems in dedicated chapters | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Computational complexity | |
650 | 4 | |a Mathematical optimization | |
650 | 4 | |a Operations research | |
650 | 4 | |a Optimization | |
650 | 4 | |a Operation Research/Decision Theory | |
650 | 4 | |a Discrete Mathematics in Computer Science | |
650 | 4 | |a Operations Research, Management Science | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Rucksackproblem |0 (DE-588)4178600-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kombinatorische Optimierung |0 (DE-588)4031826-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kombinatorische Optimierung |0 (DE-588)4031826-6 |D s |
689 | 0 | 1 | |a Rucksackproblem |0 (DE-588)4178600-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Pferschy, Ulrich |e Sonstige |4 oth | |
700 | 1 | |a Pisinger, David |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-540-24777-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857810 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096814723072 |
---|---|
any_adam_object | |
author | Kellerer, Hans |
author_facet | Kellerer, Hans |
author_role | aut |
author_sort | Kellerer, Hans |
author_variant | h k hk |
building | Verbundindex |
bvnumber | BV042422393 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184504430 (DE-599)BVBBV042422393 |
dewey-full | 519.6 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.6 |
dewey-search | 519.6 |
dewey-sort | 3519.6 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-540-24777-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03420nmm a2200553zc 4500</leader><controlfield tag="001">BV042422393</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2004 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783540247777</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-540-24777-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783642073113</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-642-07311-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-540-24777-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184504430</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422393</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.6</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kellerer, Hans</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Knapsack Problems</subfield><subfield code="c">by Hans Kellerer, Ulrich Pferschy, David Pisinger</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Berlin, Heidelberg</subfield><subfield code="b">Springer Berlin Heidelberg</subfield><subfield code="c">2004</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XX, 548 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Thirteen years have passed since the seminal book on knapsack problems by Martello and Toth appeared. On this occasion a former colleague exclaimed back in 1990: "How can you write 250 pages on the knapsack problem?" Indeed, the definition of the knapsack problem is easily understood even by a non-expert who will not suspect the presence of challenging research topics in this area at the first glance. However, in the last decade a large number of research publications contributed new results for the knapsack problem in all areas of interest such as exact algorithms, heuristics and approximation schemes. Moreover, the extension of the knapsack problem to higher dimensions both in the number of constraints and in the num ber of knapsacks, as well as the modification of the problem structure concerning the available item set and the objective function, leads to a number of interesting variations of practical relevance which were the subject of intensive research during the last few years. Hence, two years ago the idea arose to produce a new monograph covering not only the most recent developments of the standard knapsack problem, but also giving a comprehensive treatment of the whole knapsack family including the siblings such as the subset sum problem and the bounded and unbounded knapsack problem, and also more distant relatives such as multidimensional, multiple, multiple-choice and quadratic knapsack problems in dedicated chapters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational complexity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematical optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations research</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operation Research/Decision Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Discrete Mathematics in Computer Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operations Research, Management Science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Rucksackproblem</subfield><subfield code="0">(DE-588)4178600-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kombinatorische Optimierung</subfield><subfield code="0">(DE-588)4031826-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kombinatorische Optimierung</subfield><subfield code="0">(DE-588)4031826-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Rucksackproblem</subfield><subfield code="0">(DE-588)4178600-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pferschy, Ulrich</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pisinger, David</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-540-24777-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857810</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422393 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783540247777 9783642073113 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857810 |
oclc_num | 1184504430 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XX, 548 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2004 |
publishDateSearch | 2004 |
publishDateSort | 2004 |
publisher | Springer Berlin Heidelberg |
record_format | marc |
spelling | Kellerer, Hans Verfasser aut Knapsack Problems by Hans Kellerer, Ulrich Pferschy, David Pisinger Berlin, Heidelberg Springer Berlin Heidelberg 2004 1 Online-Ressource (XX, 548 p) txt rdacontent c rdamedia cr rdacarrier Thirteen years have passed since the seminal book on knapsack problems by Martello and Toth appeared. On this occasion a former colleague exclaimed back in 1990: "How can you write 250 pages on the knapsack problem?" Indeed, the definition of the knapsack problem is easily understood even by a non-expert who will not suspect the presence of challenging research topics in this area at the first glance. However, in the last decade a large number of research publications contributed new results for the knapsack problem in all areas of interest such as exact algorithms, heuristics and approximation schemes. Moreover, the extension of the knapsack problem to higher dimensions both in the number of constraints and in the num ber of knapsacks, as well as the modification of the problem structure concerning the available item set and the objective function, leads to a number of interesting variations of practical relevance which were the subject of intensive research during the last few years. Hence, two years ago the idea arose to produce a new monograph covering not only the most recent developments of the standard knapsack problem, but also giving a comprehensive treatment of the whole knapsack family including the siblings such as the subset sum problem and the bounded and unbounded knapsack problem, and also more distant relatives such as multidimensional, multiple, multiple-choice and quadratic knapsack problems in dedicated chapters Mathematics Computational complexity Mathematical optimization Operations research Optimization Operation Research/Decision Theory Discrete Mathematics in Computer Science Operations Research, Management Science Mathematik Rucksackproblem (DE-588)4178600-2 gnd rswk-swf Kombinatorische Optimierung (DE-588)4031826-6 gnd rswk-swf Kombinatorische Optimierung (DE-588)4031826-6 s Rucksackproblem (DE-588)4178600-2 s 1\p DE-604 Pferschy, Ulrich Sonstige oth Pisinger, David Sonstige oth https://doi.org/10.1007/978-3-540-24777-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kellerer, Hans Knapsack Problems Mathematics Computational complexity Mathematical optimization Operations research Optimization Operation Research/Decision Theory Discrete Mathematics in Computer Science Operations Research, Management Science Mathematik Rucksackproblem (DE-588)4178600-2 gnd Kombinatorische Optimierung (DE-588)4031826-6 gnd |
subject_GND | (DE-588)4178600-2 (DE-588)4031826-6 |
title | Knapsack Problems |
title_auth | Knapsack Problems |
title_exact_search | Knapsack Problems |
title_full | Knapsack Problems by Hans Kellerer, Ulrich Pferschy, David Pisinger |
title_fullStr | Knapsack Problems by Hans Kellerer, Ulrich Pferschy, David Pisinger |
title_full_unstemmed | Knapsack Problems by Hans Kellerer, Ulrich Pferschy, David Pisinger |
title_short | Knapsack Problems |
title_sort | knapsack problems |
topic | Mathematics Computational complexity Mathematical optimization Operations research Optimization Operation Research/Decision Theory Discrete Mathematics in Computer Science Operations Research, Management Science Mathematik Rucksackproblem (DE-588)4178600-2 gnd Kombinatorische Optimierung (DE-588)4031826-6 gnd |
topic_facet | Mathematics Computational complexity Mathematical optimization Operations research Optimization Operation Research/Decision Theory Discrete Mathematics in Computer Science Operations Research, Management Science Mathematik Rucksackproblem Kombinatorische Optimierung |
url | https://doi.org/10.1007/978-3-540-24777-7 |
work_keys_str_mv | AT kellererhans knapsackproblems AT pferschyulrich knapsackproblems AT pisingerdavid knapsackproblems |