The Riemann-Hilbert Problem: A Publication from the Steklov Institute of Mathematics Adviser: Armen Sergeev
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Wiesbaden
Vieweg+Teubner Verlag
1994
|
Schriftenreihe: | Aspects of Mathematics
22 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book is devoted to Hilbert's 21st problem (the Riemann-Hilbert problem) which belongs to the theory of linear systems of ordinary differential equations in the complex domain. The problem concems the existence of a Fuchsian system with prescribed singularities and monodromy. Hilbert was convinced that such a system always exists. However, this tumed out to be a rare case of a wrong forecast made by hirn. In 1989 the second author (A.B.) discovered a counterexample, thus 1 obtaining a negative solution to Hilbert's 21st problem. After we recognized that some "data" (singularities and monodromy) can be obtai ned from a Fuchsian system and some others cannot, we are enforced to change our point of view. To make the terminology more precise, we shaII caII the foIIowing problem the Riemann-Hilbert problem for such and such data: does there exist a Fuchsian system having these singularities and monodromy? The contemporary version of the 21 st Hilbert problem is to find conditions implying a positive or negative solution to the Riemann-Hilbert problem |
Beschreibung: | 1 Online-Ressource (IX, 193 p) |
ISBN: | 9783322929099 9783322929112 |
ISSN: | 0179-2156 |
DOI: | 10.1007/978-3-322-92909-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422382 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1994 |||| o||u| ||||||eng d | ||
020 | |a 9783322929099 |c Online |9 978-3-322-92909-9 | ||
020 | |a 9783322929112 |c Print |9 978-3-322-92911-2 | ||
024 | 7 | |a 10.1007/978-3-322-92909-9 |2 doi | |
035 | |a (OCoLC)863997399 | ||
035 | |a (DE-599)BVBBV042422382 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Anosov, D. V. |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Riemann-Hilbert Problem |b A Publication from the Steklov Institute of Mathematics Adviser: Armen Sergeev |c by D. V. Anosov, A. A. Bolibruch |
264 | 1 | |a Wiesbaden |b Vieweg+Teubner Verlag |c 1994 | |
300 | |a 1 Online-Ressource (IX, 193 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Aspects of Mathematics |v 22 |x 0179-2156 | |
500 | |a This book is devoted to Hilbert's 21st problem (the Riemann-Hilbert problem) which belongs to the theory of linear systems of ordinary differential equations in the complex domain. The problem concems the existence of a Fuchsian system with prescribed singularities and monodromy. Hilbert was convinced that such a system always exists. However, this tumed out to be a rare case of a wrong forecast made by hirn. In 1989 the second author (A.B.) discovered a counterexample, thus 1 obtaining a negative solution to Hilbert's 21st problem. After we recognized that some "data" (singularities and monodromy) can be obtai ned from a Fuchsian system and some others cannot, we are enforced to change our point of view. To make the terminology more precise, we shaII caII the foIIowing problem the Riemann-Hilbert problem for such and such data: does there exist a Fuchsian system having these singularities and monodromy? The contemporary version of the 21 st Hilbert problem is to find conditions implying a positive or negative solution to the Riemann-Hilbert problem | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Bolibruch, A. A. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-322-92909-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857799 |
Datensatz im Suchindex
_version_ | 1804153096783265792 |
---|---|
any_adam_object | |
author | Anosov, D. V. |
author_facet | Anosov, D. V. |
author_role | aut |
author_sort | Anosov, D. V. |
author_variant | d v a dv dva |
building | Verbundindex |
bvnumber | BV042422382 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863997399 (DE-599)BVBBV042422382 |
dewey-full | 516 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516 |
dewey-search | 516 |
dewey-sort | 3516 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-322-92909-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02431nmm a2200409zcb4500</leader><controlfield tag="001">BV042422382</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783322929099</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-322-92909-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783322929112</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-322-92911-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-322-92909-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863997399</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422382</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Anosov, D. V.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Riemann-Hilbert Problem</subfield><subfield code="b">A Publication from the Steklov Institute of Mathematics Adviser: Armen Sergeev</subfield><subfield code="c">by D. V. Anosov, A. A. Bolibruch</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wiesbaden</subfield><subfield code="b">Vieweg+Teubner Verlag</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 193 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Aspects of Mathematics</subfield><subfield code="v">22</subfield><subfield code="x">0179-2156</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is devoted to Hilbert's 21st problem (the Riemann-Hilbert problem) which belongs to the theory of linear systems of ordinary differential equations in the complex domain. The problem concems the existence of a Fuchsian system with prescribed singularities and monodromy. Hilbert was convinced that such a system always exists. However, this tumed out to be a rare case of a wrong forecast made by hirn. In 1989 the second author (A.B.) discovered a counterexample, thus 1 obtaining a negative solution to Hilbert's 21st problem. After we recognized that some "data" (singularities and monodromy) can be obtai ned from a Fuchsian system and some others cannot, we are enforced to change our point of view. To make the terminology more precise, we shaII caII the foIIowing problem the Riemann-Hilbert problem for such and such data: does there exist a Fuchsian system having these singularities and monodromy? The contemporary version of the 21 st Hilbert problem is to find conditions implying a positive or negative solution to the Riemann-Hilbert problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bolibruch, A. A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-322-92909-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857799</subfield></datafield></record></collection> |
id | DE-604.BV042422382 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783322929099 9783322929112 |
issn | 0179-2156 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857799 |
oclc_num | 863997399 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (IX, 193 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Vieweg+Teubner Verlag |
record_format | marc |
series2 | Aspects of Mathematics |
spelling | Anosov, D. V. Verfasser aut The Riemann-Hilbert Problem A Publication from the Steklov Institute of Mathematics Adviser: Armen Sergeev by D. V. Anosov, A. A. Bolibruch Wiesbaden Vieweg+Teubner Verlag 1994 1 Online-Ressource (IX, 193 p) txt rdacontent c rdamedia cr rdacarrier Aspects of Mathematics 22 0179-2156 This book is devoted to Hilbert's 21st problem (the Riemann-Hilbert problem) which belongs to the theory of linear systems of ordinary differential equations in the complex domain. The problem concems the existence of a Fuchsian system with prescribed singularities and monodromy. Hilbert was convinced that such a system always exists. However, this tumed out to be a rare case of a wrong forecast made by hirn. In 1989 the second author (A.B.) discovered a counterexample, thus 1 obtaining a negative solution to Hilbert's 21st problem. After we recognized that some "data" (singularities and monodromy) can be obtai ned from a Fuchsian system and some others cannot, we are enforced to change our point of view. To make the terminology more precise, we shaII caII the foIIowing problem the Riemann-Hilbert problem for such and such data: does there exist a Fuchsian system having these singularities and monodromy? The contemporary version of the 21 st Hilbert problem is to find conditions implying a positive or negative solution to the Riemann-Hilbert problem Mathematics Geometry Mathematik Bolibruch, A. A. Sonstige oth https://doi.org/10.1007/978-3-322-92909-9 Verlag Volltext |
spellingShingle | Anosov, D. V. The Riemann-Hilbert Problem A Publication from the Steklov Institute of Mathematics Adviser: Armen Sergeev Mathematics Geometry Mathematik |
title | The Riemann-Hilbert Problem A Publication from the Steklov Institute of Mathematics Adviser: Armen Sergeev |
title_auth | The Riemann-Hilbert Problem A Publication from the Steklov Institute of Mathematics Adviser: Armen Sergeev |
title_exact_search | The Riemann-Hilbert Problem A Publication from the Steklov Institute of Mathematics Adviser: Armen Sergeev |
title_full | The Riemann-Hilbert Problem A Publication from the Steklov Institute of Mathematics Adviser: Armen Sergeev by D. V. Anosov, A. A. Bolibruch |
title_fullStr | The Riemann-Hilbert Problem A Publication from the Steklov Institute of Mathematics Adviser: Armen Sergeev by D. V. Anosov, A. A. Bolibruch |
title_full_unstemmed | The Riemann-Hilbert Problem A Publication from the Steklov Institute of Mathematics Adviser: Armen Sergeev by D. V. Anosov, A. A. Bolibruch |
title_short | The Riemann-Hilbert Problem |
title_sort | the riemann hilbert problem a publication from the steklov institute of mathematics adviser armen sergeev |
title_sub | A Publication from the Steklov Institute of Mathematics Adviser: Armen Sergeev |
topic | Mathematics Geometry Mathematik |
topic_facet | Mathematics Geometry Mathematik |
url | https://doi.org/10.1007/978-3-322-92909-9 |
work_keys_str_mv | AT anosovdv theriemannhilbertproblemapublicationfromthesteklovinstituteofmathematicsadviserarmensergeev AT bolibruchaa theriemannhilbertproblemapublicationfromthesteklovinstituteofmathematicsadviserarmensergeev |