Moduli of Curves and Abelian Varieties: The Dutch Intercity Seminar on Moduli
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Wiesbaden
Vieweg+Teubner Verlag
1999
|
Schriftenreihe: | Aspects of Mathematics
33 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The Dutch Intercity Seminar on Moduli, which dates back to the early eighties, was an initiative of G. van der Geer, F. Oort and C. Peters. Through the years it became a focal point of Dutch mathematics and it gained some fame, also outside Holland, as an active biweekly research seminar. The tradition continues up to today. The present volume, with contributions of R. Dijkgraaf, C. Faber, G. van der Geer, R. Hain, E. Looijenga, and F. Oort, originates from the seminar held in 1995--96. Some of the articles here were discussed, in preliminary form, in the seminar; others are completely new. Two introductory papers, on moduli of abelian varieties and on moduli of curves, accompany the articles. Topics include a stratification of a moduli space of abelian varieties in positive characteristic, and the calculation of the classes of the strata, tautological classes for moduli of abelian varieties as well as for moduli of curves, correspondences between moduli spaces of curves, locally symmetric families of curves and jacobians, and the role of symmetric product spaces in quantum field theory, string theory and matrix theory |
Beschreibung: | 1 Online-Ressource (VIII, 200p) |
ISBN: | 9783322901729 9783322901743 |
ISSN: | 0179-2156 |
DOI: | 10.1007/978-3-322-90172-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422377 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1999 |||| o||u| ||||||eng d | ||
020 | |a 9783322901729 |c Online |9 978-3-322-90172-9 | ||
020 | |a 9783322901743 |c Print |9 978-3-322-90174-3 | ||
024 | 7 | |a 10.1007/978-3-322-90172-9 |2 doi | |
035 | |a (OCoLC)864013870 | ||
035 | |a (DE-599)BVBBV042422377 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 620 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Faber, Carel |e Verfasser |4 aut | |
245 | 1 | 0 | |a Moduli of Curves and Abelian Varieties |b The Dutch Intercity Seminar on Moduli |c edited by Carel Faber, Eduard Looijenga |
264 | 1 | |a Wiesbaden |b Vieweg+Teubner Verlag |c 1999 | |
300 | |a 1 Online-Ressource (VIII, 200p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Aspects of Mathematics |v 33 |x 0179-2156 | |
500 | |a The Dutch Intercity Seminar on Moduli, which dates back to the early eighties, was an initiative of G. van der Geer, F. Oort and C. Peters. Through the years it became a focal point of Dutch mathematics and it gained some fame, also outside Holland, as an active biweekly research seminar. The tradition continues up to today. The present volume, with contributions of R. Dijkgraaf, C. Faber, G. van der Geer, R. Hain, E. Looijenga, and F. Oort, originates from the seminar held in 1995--96. Some of the articles here were discussed, in preliminary form, in the seminar; others are completely new. Two introductory papers, on moduli of abelian varieties and on moduli of curves, accompany the articles. Topics include a stratification of a moduli space of abelian varieties in positive characteristic, and the calculation of the classes of the strata, tautological classes for moduli of abelian varieties as well as for moduli of curves, correspondences between moduli spaces of curves, locally symmetric families of curves and jacobians, and the role of symmetric product spaces in quantum field theory, string theory and matrix theory | ||
650 | 4 | |a Engineering | |
650 | 4 | |a Engineering, general | |
650 | 4 | |a Ingenieurwissenschaften | |
650 | 0 | 7 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Kurve |0 (DE-588)4001165-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraischer Modulraum |0 (DE-588)4141853-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modulraum |0 (DE-588)4183462-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Modul |0 (DE-588)4129770-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Abelsche Mannigfaltigkeit |0 (DE-588)4140992-9 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
655 | 7 | |8 2\p |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
689 | 0 | 0 | |a Algebraische Kurve |0 (DE-588)4001165-3 |D s |
689 | 0 | 1 | |a Modulraum |0 (DE-588)4183462-8 |D s |
689 | 0 | |8 3\p |5 DE-604 | |
689 | 1 | 0 | |a Algebraische Kurve |0 (DE-588)4001165-3 |D s |
689 | 1 | 1 | |a Algebraischer Modulraum |0 (DE-588)4141853-0 |D s |
689 | 1 | |8 4\p |5 DE-604 | |
689 | 2 | 0 | |a Abelsche Mannigfaltigkeit |0 (DE-588)4140992-9 |D s |
689 | 2 | 1 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |D s |
689 | 2 | |8 5\p |5 DE-604 | |
689 | 3 | 0 | |a Abelsche Mannigfaltigkeit |0 (DE-588)4140992-9 |D s |
689 | 3 | 1 | |a Algebraischer Modulraum |0 (DE-588)4141853-0 |D s |
689 | 3 | |8 6\p |5 DE-604 | |
689 | 4 | 0 | |a Algebraische Kurve |0 (DE-588)4001165-3 |D s |
689 | 4 | 1 | |a Modul |0 (DE-588)4129770-2 |D s |
689 | 4 | |8 7\p |5 DE-604 | |
689 | 5 | 0 | |a Abelsche Mannigfaltigkeit |0 (DE-588)4140992-9 |D s |
689 | 5 | 1 | |a Modulraum |0 (DE-588)4183462-8 |D s |
689 | 5 | |8 8\p |5 DE-604 | |
700 | 1 | |a Looijenga, Eduard |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-322-90172-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857794 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 6\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 7\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 8\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096763342848 |
---|---|
any_adam_object | |
author | Faber, Carel |
author_facet | Faber, Carel |
author_role | aut |
author_sort | Faber, Carel |
author_variant | c f cf |
building | Verbundindex |
bvnumber | BV042422377 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)864013870 (DE-599)BVBBV042422377 |
dewey-full | 620 |
dewey-hundreds | 600 - Technology (Applied sciences) |
dewey-ones | 620 - Engineering and allied operations |
dewey-raw | 620 |
dewey-search | 620 |
dewey-sort | 3620 |
dewey-tens | 620 - Engineering and allied operations |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-322-90172-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04591nmm a2200817zcb4500</leader><controlfield tag="001">BV042422377</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1999 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783322901729</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-322-90172-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783322901743</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-322-90174-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-322-90172-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)864013870</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422377</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">620</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Faber, Carel</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Moduli of Curves and Abelian Varieties</subfield><subfield code="b">The Dutch Intercity Seminar on Moduli</subfield><subfield code="c">edited by Carel Faber, Eduard Looijenga</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wiesbaden</subfield><subfield code="b">Vieweg+Teubner Verlag</subfield><subfield code="c">1999</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 200p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Aspects of Mathematics</subfield><subfield code="v">33</subfield><subfield code="x">0179-2156</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The Dutch Intercity Seminar on Moduli, which dates back to the early eighties, was an initiative of G. van der Geer, F. Oort and C. Peters. Through the years it became a focal point of Dutch mathematics and it gained some fame, also outside Holland, as an active biweekly research seminar. The tradition continues up to today. The present volume, with contributions of R. Dijkgraaf, C. Faber, G. van der Geer, R. Hain, E. Looijenga, and F. Oort, originates from the seminar held in 1995--96. Some of the articles here were discussed, in preliminary form, in the seminar; others are completely new. Two introductory papers, on moduli of abelian varieties and on moduli of curves, accompany the articles. Topics include a stratification of a moduli space of abelian varieties in positive characteristic, and the calculation of the classes of the strata, tautological classes for moduli of abelian varieties as well as for moduli of curves, correspondences between moduli spaces of curves, locally symmetric families of curves and jacobians, and the role of symmetric product spaces in quantum field theory, string theory and matrix theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Engineering, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ingenieurwissenschaften</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Kurve</subfield><subfield code="0">(DE-588)4001165-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraischer Modulraum</subfield><subfield code="0">(DE-588)4141853-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modulraum</subfield><subfield code="0">(DE-588)4183462-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Modul</subfield><subfield code="0">(DE-588)4129770-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Abelsche Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4140992-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">2\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Algebraische Kurve</subfield><subfield code="0">(DE-588)4001165-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Modulraum</subfield><subfield code="0">(DE-588)4183462-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Algebraische Kurve</subfield><subfield code="0">(DE-588)4001165-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Algebraischer Modulraum</subfield><subfield code="0">(DE-588)4141853-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Abelsche Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4140992-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Abelsche Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4140992-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Algebraischer Modulraum</subfield><subfield code="0">(DE-588)4141853-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">6\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Algebraische Kurve</subfield><subfield code="0">(DE-588)4001165-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2="1"><subfield code="a">Modul</subfield><subfield code="0">(DE-588)4129770-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">7\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="5" ind2="0"><subfield code="a">Abelsche Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4140992-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2="1"><subfield code="a">Modulraum</subfield><subfield code="0">(DE-588)4183462-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="5" ind2=" "><subfield code="8">8\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Looijenga, Eduard</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-322-90172-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857794</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">6\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">7\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">8\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content 2\p (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Aufsatzsammlung Konferenzschrift |
id | DE-604.BV042422377 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783322901729 9783322901743 |
issn | 0179-2156 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857794 |
oclc_num | 864013870 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 200p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1999 |
publishDateSearch | 1999 |
publishDateSort | 1999 |
publisher | Vieweg+Teubner Verlag |
record_format | marc |
series2 | Aspects of Mathematics |
spelling | Faber, Carel Verfasser aut Moduli of Curves and Abelian Varieties The Dutch Intercity Seminar on Moduli edited by Carel Faber, Eduard Looijenga Wiesbaden Vieweg+Teubner Verlag 1999 1 Online-Ressource (VIII, 200p) txt rdacontent c rdamedia cr rdacarrier Aspects of Mathematics 33 0179-2156 The Dutch Intercity Seminar on Moduli, which dates back to the early eighties, was an initiative of G. van der Geer, F. Oort and C. Peters. Through the years it became a focal point of Dutch mathematics and it gained some fame, also outside Holland, as an active biweekly research seminar. The tradition continues up to today. The present volume, with contributions of R. Dijkgraaf, C. Faber, G. van der Geer, R. Hain, E. Looijenga, and F. Oort, originates from the seminar held in 1995--96. Some of the articles here were discussed, in preliminary form, in the seminar; others are completely new. Two introductory papers, on moduli of abelian varieties and on moduli of curves, accompany the articles. Topics include a stratification of a moduli space of abelian varieties in positive characteristic, and the calculation of the classes of the strata, tautological classes for moduli of abelian varieties as well as for moduli of curves, correspondences between moduli spaces of curves, locally symmetric families of curves and jacobians, and the role of symmetric product spaces in quantum field theory, string theory and matrix theory Engineering Engineering, general Ingenieurwissenschaften Algebraische Geometrie (DE-588)4001161-6 gnd rswk-swf Algebraische Kurve (DE-588)4001165-3 gnd rswk-swf Algebraischer Modulraum (DE-588)4141853-0 gnd rswk-swf Modulraum (DE-588)4183462-8 gnd rswk-swf Modul (DE-588)4129770-2 gnd rswk-swf Abelsche Mannigfaltigkeit (DE-588)4140992-9 gnd rswk-swf 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content 2\p (DE-588)1071861417 Konferenzschrift gnd-content Algebraische Kurve (DE-588)4001165-3 s Modulraum (DE-588)4183462-8 s 3\p DE-604 Algebraischer Modulraum (DE-588)4141853-0 s 4\p DE-604 Abelsche Mannigfaltigkeit (DE-588)4140992-9 s Algebraische Geometrie (DE-588)4001161-6 s 5\p DE-604 6\p DE-604 Modul (DE-588)4129770-2 s 7\p DE-604 8\p DE-604 Looijenga, Eduard Sonstige oth https://doi.org/10.1007/978-3-322-90172-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 6\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 7\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 8\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Faber, Carel Moduli of Curves and Abelian Varieties The Dutch Intercity Seminar on Moduli Engineering Engineering, general Ingenieurwissenschaften Algebraische Geometrie (DE-588)4001161-6 gnd Algebraische Kurve (DE-588)4001165-3 gnd Algebraischer Modulraum (DE-588)4141853-0 gnd Modulraum (DE-588)4183462-8 gnd Modul (DE-588)4129770-2 gnd Abelsche Mannigfaltigkeit (DE-588)4140992-9 gnd |
subject_GND | (DE-588)4001161-6 (DE-588)4001165-3 (DE-588)4141853-0 (DE-588)4183462-8 (DE-588)4129770-2 (DE-588)4140992-9 (DE-588)4143413-4 (DE-588)1071861417 |
title | Moduli of Curves and Abelian Varieties The Dutch Intercity Seminar on Moduli |
title_auth | Moduli of Curves and Abelian Varieties The Dutch Intercity Seminar on Moduli |
title_exact_search | Moduli of Curves and Abelian Varieties The Dutch Intercity Seminar on Moduli |
title_full | Moduli of Curves and Abelian Varieties The Dutch Intercity Seminar on Moduli edited by Carel Faber, Eduard Looijenga |
title_fullStr | Moduli of Curves and Abelian Varieties The Dutch Intercity Seminar on Moduli edited by Carel Faber, Eduard Looijenga |
title_full_unstemmed | Moduli of Curves and Abelian Varieties The Dutch Intercity Seminar on Moduli edited by Carel Faber, Eduard Looijenga |
title_short | Moduli of Curves and Abelian Varieties |
title_sort | moduli of curves and abelian varieties the dutch intercity seminar on moduli |
title_sub | The Dutch Intercity Seminar on Moduli |
topic | Engineering Engineering, general Ingenieurwissenschaften Algebraische Geometrie (DE-588)4001161-6 gnd Algebraische Kurve (DE-588)4001165-3 gnd Algebraischer Modulraum (DE-588)4141853-0 gnd Modulraum (DE-588)4183462-8 gnd Modul (DE-588)4129770-2 gnd Abelsche Mannigfaltigkeit (DE-588)4140992-9 gnd |
topic_facet | Engineering Engineering, general Ingenieurwissenschaften Algebraische Geometrie Algebraische Kurve Algebraischer Modulraum Modulraum Modul Abelsche Mannigfaltigkeit Aufsatzsammlung Konferenzschrift |
url | https://doi.org/10.1007/978-3-322-90172-9 |
work_keys_str_mv | AT fabercarel moduliofcurvesandabelianvarietiesthedutchintercityseminaronmoduli AT looijengaeduard moduliofcurvesandabelianvarietiesthedutchintercityseminaronmoduli |