Ruled Varieties: An Introduction to Algebraic Differential Geometry
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Wiesbaden
Vieweg+Teubner Verlag
2001
|
Schriftenreihe: | Advanced Lectures in Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Ruled varieties are unions of a family of linear spaces. They are objects of algebraic geometry as well as differential geometry, especially if the ruling is developable. This book is an introduction to both aspects, the algebraic and differential one. Starting from very elementary facts, the necessary techniques are developed, especially concerning Grassmannians and fundamental forms in a version suitable for complex projective algebraic geometry. Finally, this leads to recent results on the classification of developable ruled varieties and facts about tangent and secant varieties. Compared to many other topics of algebraic geometry, this is an area easily accessible to a graduate course |
Beschreibung: | 1 Online-Ressource (X, 142p) |
ISBN: | 9783322802170 9783528031381 |
ISSN: | 0932-7134 |
DOI: | 10.1007/978-3-322-80217-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422355 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9783322802170 |c Online |9 978-3-322-80217-0 | ||
020 | |a 9783528031381 |c Print |9 978-3-528-03138-1 | ||
024 | 7 | |a 10.1007/978-3-322-80217-0 |2 doi | |
035 | |a (OCoLC)863818525 | ||
035 | |a (DE-599)BVBBV042422355 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Fischer, Gerd |e Verfasser |4 aut | |
245 | 1 | 0 | |a Ruled Varieties |b An Introduction to Algebraic Differential Geometry |c by Gerd Fischer, Jens Piontkowski |
264 | 1 | |a Wiesbaden |b Vieweg+Teubner Verlag |c 2001 | |
300 | |a 1 Online-Ressource (X, 142p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Advanced Lectures in Mathematics |x 0932-7134 | |
500 | |a Ruled varieties are unions of a family of linear spaces. They are objects of algebraic geometry as well as differential geometry, especially if the ruling is developable. This book is an introduction to both aspects, the algebraic and differential one. Starting from very elementary facts, the necessary techniques are developed, especially concerning Grassmannians and fundamental forms in a version suitable for complex projective algebraic geometry. Finally, this leads to recent results on the classification of developable ruled varieties and facts about tangent and secant varieties. Compared to many other topics of algebraic geometry, this is an area easily accessible to a graduate course | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Tangentenvarietät |0 (DE-588)4640697-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sekantenvarietät |0 (DE-588)4640696-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Abwickelbare Varietät |0 (DE-588)4640698-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Differentialgeometrie |0 (DE-588)4012248-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geregelte Varietät |0 (DE-588)4640695-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Differentialgeometrie |0 (DE-588)4012248-7 |D s |
689 | 0 | 1 | |a Algebraische Geometrie |0 (DE-588)4001161-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Geregelte Varietät |0 (DE-588)4640695-5 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Tangentenvarietät |0 (DE-588)4640697-9 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Abwickelbare Varietät |0 (DE-588)4640698-0 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
689 | 4 | 0 | |a Sekantenvarietät |0 (DE-588)4640696-7 |D s |
689 | 4 | |8 5\p |5 DE-604 | |
700 | 1 | |a Piontkowski, Jens |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-322-80217-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857772 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 5\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096695185408 |
---|---|
any_adam_object | |
author | Fischer, Gerd |
author_facet | Fischer, Gerd |
author_role | aut |
author_sort | Fischer, Gerd |
author_variant | g f gf |
building | Verbundindex |
bvnumber | BV042422355 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863818525 (DE-599)BVBBV042422355 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-322-80217-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03483nmm a2200697zc 4500</leader><controlfield tag="001">BV042422355</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783322802170</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-322-80217-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783528031381</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-528-03138-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-322-80217-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863818525</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422355</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Fischer, Gerd</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Ruled Varieties</subfield><subfield code="b">An Introduction to Algebraic Differential Geometry</subfield><subfield code="c">by Gerd Fischer, Jens Piontkowski</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wiesbaden</subfield><subfield code="b">Vieweg+Teubner Verlag</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 142p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advanced Lectures in Mathematics</subfield><subfield code="x">0932-7134</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Ruled varieties are unions of a family of linear spaces. They are objects of algebraic geometry as well as differential geometry, especially if the ruling is developable. This book is an introduction to both aspects, the algebraic and differential one. Starting from very elementary facts, the necessary techniques are developed, especially concerning Grassmannians and fundamental forms in a version suitable for complex projective algebraic geometry. Finally, this leads to recent results on the classification of developable ruled varieties and facts about tangent and secant varieties. Compared to many other topics of algebraic geometry, this is an area easily accessible to a graduate course</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Tangentenvarietät</subfield><subfield code="0">(DE-588)4640697-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sekantenvarietät</subfield><subfield code="0">(DE-588)4640696-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Abwickelbare Varietät</subfield><subfield code="0">(DE-588)4640698-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geregelte Varietät</subfield><subfield code="0">(DE-588)4640695-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Differentialgeometrie</subfield><subfield code="0">(DE-588)4012248-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Algebraische Geometrie</subfield><subfield code="0">(DE-588)4001161-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Geregelte Varietät</subfield><subfield code="0">(DE-588)4640695-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Tangentenvarietät</subfield><subfield code="0">(DE-588)4640697-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Abwickelbare Varietät</subfield><subfield code="0">(DE-588)4640698-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="4" ind2="0"><subfield code="a">Sekantenvarietät</subfield><subfield code="0">(DE-588)4640696-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="4" ind2=" "><subfield code="8">5\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Piontkowski, Jens</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-322-80217-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857772</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">5\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422355 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783322802170 9783528031381 |
issn | 0932-7134 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857772 |
oclc_num | 863818525 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 142p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Vieweg+Teubner Verlag |
record_format | marc |
series2 | Advanced Lectures in Mathematics |
spelling | Fischer, Gerd Verfasser aut Ruled Varieties An Introduction to Algebraic Differential Geometry by Gerd Fischer, Jens Piontkowski Wiesbaden Vieweg+Teubner Verlag 2001 1 Online-Ressource (X, 142p) txt rdacontent c rdamedia cr rdacarrier Advanced Lectures in Mathematics 0932-7134 Ruled varieties are unions of a family of linear spaces. They are objects of algebraic geometry as well as differential geometry, especially if the ruling is developable. This book is an introduction to both aspects, the algebraic and differential one. Starting from very elementary facts, the necessary techniques are developed, especially concerning Grassmannians and fundamental forms in a version suitable for complex projective algebraic geometry. Finally, this leads to recent results on the classification of developable ruled varieties and facts about tangent and secant varieties. Compared to many other topics of algebraic geometry, this is an area easily accessible to a graduate course Mathematics Geometry Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Algebraische Geometrie (DE-588)4001161-6 gnd rswk-swf Tangentenvarietät (DE-588)4640697-9 gnd rswk-swf Sekantenvarietät (DE-588)4640696-7 gnd rswk-swf Abwickelbare Varietät (DE-588)4640698-0 gnd rswk-swf Differentialgeometrie (DE-588)4012248-7 gnd rswk-swf Geregelte Varietät (DE-588)4640695-5 gnd rswk-swf Differentialgeometrie (DE-588)4012248-7 s Algebraische Geometrie (DE-588)4001161-6 s 1\p DE-604 Geregelte Varietät (DE-588)4640695-5 s 2\p DE-604 Tangentenvarietät (DE-588)4640697-9 s 3\p DE-604 Abwickelbare Varietät (DE-588)4640698-0 s 4\p DE-604 Sekantenvarietät (DE-588)4640696-7 s 5\p DE-604 Piontkowski, Jens Sonstige oth https://doi.org/10.1007/978-3-322-80217-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 5\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Fischer, Gerd Ruled Varieties An Introduction to Algebraic Differential Geometry Mathematics Geometry Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Algebraische Geometrie (DE-588)4001161-6 gnd Tangentenvarietät (DE-588)4640697-9 gnd Sekantenvarietät (DE-588)4640696-7 gnd Abwickelbare Varietät (DE-588)4640698-0 gnd Differentialgeometrie (DE-588)4012248-7 gnd Geregelte Varietät (DE-588)4640695-5 gnd |
subject_GND | (DE-588)4001161-6 (DE-588)4640697-9 (DE-588)4640696-7 (DE-588)4640698-0 (DE-588)4012248-7 (DE-588)4640695-5 |
title | Ruled Varieties An Introduction to Algebraic Differential Geometry |
title_auth | Ruled Varieties An Introduction to Algebraic Differential Geometry |
title_exact_search | Ruled Varieties An Introduction to Algebraic Differential Geometry |
title_full | Ruled Varieties An Introduction to Algebraic Differential Geometry by Gerd Fischer, Jens Piontkowski |
title_fullStr | Ruled Varieties An Introduction to Algebraic Differential Geometry by Gerd Fischer, Jens Piontkowski |
title_full_unstemmed | Ruled Varieties An Introduction to Algebraic Differential Geometry by Gerd Fischer, Jens Piontkowski |
title_short | Ruled Varieties |
title_sort | ruled varieties an introduction to algebraic differential geometry |
title_sub | An Introduction to Algebraic Differential Geometry |
topic | Mathematics Geometry Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Algebraische Geometrie (DE-588)4001161-6 gnd Tangentenvarietät (DE-588)4640697-9 gnd Sekantenvarietät (DE-588)4640696-7 gnd Abwickelbare Varietät (DE-588)4640698-0 gnd Differentialgeometrie (DE-588)4012248-7 gnd Geregelte Varietät (DE-588)4640695-5 gnd |
topic_facet | Mathematics Geometry Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Algebraische Geometrie Tangentenvarietät Sekantenvarietät Abwickelbare Varietät Differentialgeometrie Geregelte Varietät |
url | https://doi.org/10.1007/978-3-322-80217-0 |
work_keys_str_mv | AT fischergerd ruledvarietiesanintroductiontoalgebraicdifferentialgeometry AT piontkowskijens ruledvarietiesanintroductiontoalgebraicdifferentialgeometry |