Parallel Multilevel Methods: Adaptive Mesh Refinement and Loadbalancing
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Wiesbaden
Vieweg+Teubner Verlag
2003
|
Schriftenreihe: | Advances in Numerical Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Main aspects of the efficient treatment of partial differential equations are discretisation, multilevel/multigrid solution and parallelisation. These distinct topics are coverd from the historical background to modern developments. It is demonstrated how the ingredients can be put together to give an adaptive and parallel multilevel approach for the solution of elliptic boundary value problems. Error estimators and adaptive grid refinement techniques for ordinary and for sparse grid discretisations are presented. Different types of additive and multiplicative multilevel solvers are discussed with respect to parallel implementation and application to adaptive refined grids. Efficiency issues are treated both for the sequential multilevel methods and for the parallel version by hash table storage techniques. Finally, space-filling curve enumeration for parallel load balancing and processor cache efficiency are discussed |
Beschreibung: | 1 Online-Ressource (216p) |
ISBN: | 9783322800633 9783519004516 |
ISSN: | 1616-2994 |
DOI: | 10.1007/978-3-322-80063-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422354 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2003 |||| o||u| ||||||eng d | ||
020 | |a 9783322800633 |c Online |9 978-3-322-80063-3 | ||
020 | |a 9783519004516 |c Print |9 978-3-519-00451-6 | ||
024 | 7 | |a 10.1007/978-3-322-80063-3 |2 doi | |
035 | |a (OCoLC)863819686 | ||
035 | |a (DE-599)BVBBV042422354 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 518 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Zumbusch, Gerhard |e Verfasser |4 aut | |
245 | 1 | 0 | |a Parallel Multilevel Methods |b Adaptive Mesh Refinement and Loadbalancing |c by Gerhard Zumbusch |
264 | 1 | |a Wiesbaden |b Vieweg+Teubner Verlag |c 2003 | |
300 | |a 1 Online-Ressource (216p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Advances in Numerical Mathematics |x 1616-2994 | |
500 | |a Main aspects of the efficient treatment of partial differential equations are discretisation, multilevel/multigrid solution and parallelisation. These distinct topics are coverd from the historical background to modern developments. It is demonstrated how the ingredients can be put together to give an adaptive and parallel multilevel approach for the solution of elliptic boundary value problems. Error estimators and adaptive grid refinement techniques for ordinary and for sparse grid discretisations are presented. Different types of additive and multiplicative multilevel solvers are discussed with respect to parallel implementation and application to adaptive refined grids. Efficiency issues are treated both for the sequential multilevel methods and for the parallel version by hash table storage techniques. Finally, space-filling curve enumeration for parallel load balancing and processor cache efficiency are discussed | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Computer science / Mathematics | |
650 | 4 | |a Computational Mathematics and Numerical Analysis | |
650 | 4 | |a Analysis | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Gitterverfeinerung |0 (DE-588)4482690-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lastteilung |0 (DE-588)4323960-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Parallelverarbeitung |0 (DE-588)4075860-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Adaptives Gitter |0 (DE-588)4333769-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Multi-level-Verfahren |0 (DE-588)4344428-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Partielle Differentialgleichung |0 (DE-588)4044779-0 |D s |
689 | 0 | 1 | |a Multi-level-Verfahren |0 (DE-588)4344428-3 |D s |
689 | 0 | 2 | |a Adaptives Gitter |0 (DE-588)4333769-7 |D s |
689 | 0 | 3 | |a Gitterverfeinerung |0 (DE-588)4482690-4 |D s |
689 | 0 | 4 | |a Parallelverarbeitung |0 (DE-588)4075860-6 |D s |
689 | 0 | 5 | |a Lastteilung |0 (DE-588)4323960-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-322-80063-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857771 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096681553920 |
---|---|
any_adam_object | |
author | Zumbusch, Gerhard |
author_facet | Zumbusch, Gerhard |
author_role | aut |
author_sort | Zumbusch, Gerhard |
author_variant | g z gz |
building | Verbundindex |
bvnumber | BV042422354 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863819686 (DE-599)BVBBV042422354 |
dewey-full | 518 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518 |
dewey-search | 518 |
dewey-sort | 3518 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-322-80063-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03274nmm a2200613zc 4500</leader><controlfield tag="001">BV042422354</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2003 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783322800633</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-322-80063-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783519004516</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-519-00451-6</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-322-80063-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863819686</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422354</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zumbusch, Gerhard</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Parallel Multilevel Methods</subfield><subfield code="b">Adaptive Mesh Refinement and Loadbalancing</subfield><subfield code="c">by Gerhard Zumbusch</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wiesbaden</subfield><subfield code="b">Vieweg+Teubner Verlag</subfield><subfield code="c">2003</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (216p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Advances in Numerical Mathematics</subfield><subfield code="x">1616-2994</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Main aspects of the efficient treatment of partial differential equations are discretisation, multilevel/multigrid solution and parallelisation. These distinct topics are coverd from the historical background to modern developments. It is demonstrated how the ingredients can be put together to give an adaptive and parallel multilevel approach for the solution of elliptic boundary value problems. Error estimators and adaptive grid refinement techniques for ordinary and for sparse grid discretisations are presented. Different types of additive and multiplicative multilevel solvers are discussed with respect to parallel implementation and application to adaptive refined grids. Efficiency issues are treated both for the sequential multilevel methods and for the parallel version by hash table storage techniques. Finally, space-filling curve enumeration for parallel load balancing and processor cache efficiency are discussed</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gitterverfeinerung</subfield><subfield code="0">(DE-588)4482690-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lastteilung</subfield><subfield code="0">(DE-588)4323960-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Parallelverarbeitung</subfield><subfield code="0">(DE-588)4075860-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Adaptives Gitter</subfield><subfield code="0">(DE-588)4333769-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Multi-level-Verfahren</subfield><subfield code="0">(DE-588)4344428-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Partielle Differentialgleichung</subfield><subfield code="0">(DE-588)4044779-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Multi-level-Verfahren</subfield><subfield code="0">(DE-588)4344428-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Adaptives Gitter</subfield><subfield code="0">(DE-588)4333769-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Gitterverfeinerung</subfield><subfield code="0">(DE-588)4482690-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="4"><subfield code="a">Parallelverarbeitung</subfield><subfield code="0">(DE-588)4075860-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="5"><subfield code="a">Lastteilung</subfield><subfield code="0">(DE-588)4323960-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-322-80063-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857771</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422354 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783322800633 9783519004516 |
issn | 1616-2994 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857771 |
oclc_num | 863819686 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (216p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2003 |
publishDateSearch | 2003 |
publishDateSort | 2003 |
publisher | Vieweg+Teubner Verlag |
record_format | marc |
series2 | Advances in Numerical Mathematics |
spelling | Zumbusch, Gerhard Verfasser aut Parallel Multilevel Methods Adaptive Mesh Refinement and Loadbalancing by Gerhard Zumbusch Wiesbaden Vieweg+Teubner Verlag 2003 1 Online-Ressource (216p) txt rdacontent c rdamedia cr rdacarrier Advances in Numerical Mathematics 1616-2994 Main aspects of the efficient treatment of partial differential equations are discretisation, multilevel/multigrid solution and parallelisation. These distinct topics are coverd from the historical background to modern developments. It is demonstrated how the ingredients can be put together to give an adaptive and parallel multilevel approach for the solution of elliptic boundary value problems. Error estimators and adaptive grid refinement techniques for ordinary and for sparse grid discretisations are presented. Different types of additive and multiplicative multilevel solvers are discussed with respect to parallel implementation and application to adaptive refined grids. Efficiency issues are treated both for the sequential multilevel methods and for the parallel version by hash table storage techniques. Finally, space-filling curve enumeration for parallel load balancing and processor cache efficiency are discussed Mathematics Global analysis (Mathematics) Computer science / Mathematics Computational Mathematics and Numerical Analysis Analysis Informatik Mathematik Gitterverfeinerung (DE-588)4482690-4 gnd rswk-swf Lastteilung (DE-588)4323960-2 gnd rswk-swf Parallelverarbeitung (DE-588)4075860-6 gnd rswk-swf Adaptives Gitter (DE-588)4333769-7 gnd rswk-swf Multi-level-Verfahren (DE-588)4344428-3 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 gnd rswk-swf Partielle Differentialgleichung (DE-588)4044779-0 s Multi-level-Verfahren (DE-588)4344428-3 s Adaptives Gitter (DE-588)4333769-7 s Gitterverfeinerung (DE-588)4482690-4 s Parallelverarbeitung (DE-588)4075860-6 s Lastteilung (DE-588)4323960-2 s 1\p DE-604 https://doi.org/10.1007/978-3-322-80063-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Zumbusch, Gerhard Parallel Multilevel Methods Adaptive Mesh Refinement and Loadbalancing Mathematics Global analysis (Mathematics) Computer science / Mathematics Computational Mathematics and Numerical Analysis Analysis Informatik Mathematik Gitterverfeinerung (DE-588)4482690-4 gnd Lastteilung (DE-588)4323960-2 gnd Parallelverarbeitung (DE-588)4075860-6 gnd Adaptives Gitter (DE-588)4333769-7 gnd Multi-level-Verfahren (DE-588)4344428-3 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
subject_GND | (DE-588)4482690-4 (DE-588)4323960-2 (DE-588)4075860-6 (DE-588)4333769-7 (DE-588)4344428-3 (DE-588)4044779-0 |
title | Parallel Multilevel Methods Adaptive Mesh Refinement and Loadbalancing |
title_auth | Parallel Multilevel Methods Adaptive Mesh Refinement and Loadbalancing |
title_exact_search | Parallel Multilevel Methods Adaptive Mesh Refinement and Loadbalancing |
title_full | Parallel Multilevel Methods Adaptive Mesh Refinement and Loadbalancing by Gerhard Zumbusch |
title_fullStr | Parallel Multilevel Methods Adaptive Mesh Refinement and Loadbalancing by Gerhard Zumbusch |
title_full_unstemmed | Parallel Multilevel Methods Adaptive Mesh Refinement and Loadbalancing by Gerhard Zumbusch |
title_short | Parallel Multilevel Methods |
title_sort | parallel multilevel methods adaptive mesh refinement and loadbalancing |
title_sub | Adaptive Mesh Refinement and Loadbalancing |
topic | Mathematics Global analysis (Mathematics) Computer science / Mathematics Computational Mathematics and Numerical Analysis Analysis Informatik Mathematik Gitterverfeinerung (DE-588)4482690-4 gnd Lastteilung (DE-588)4323960-2 gnd Parallelverarbeitung (DE-588)4075860-6 gnd Adaptives Gitter (DE-588)4333769-7 gnd Multi-level-Verfahren (DE-588)4344428-3 gnd Partielle Differentialgleichung (DE-588)4044779-0 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Computer science / Mathematics Computational Mathematics and Numerical Analysis Analysis Informatik Mathematik Gitterverfeinerung Lastteilung Parallelverarbeitung Adaptives Gitter Multi-level-Verfahren Partielle Differentialgleichung |
url | https://doi.org/10.1007/978-3-322-80063-3 |
work_keys_str_mv | AT zumbuschgerhard parallelmultilevelmethodsadaptivemeshrefinementandloadbalancing |