Evolution Equations in Scales of Banach Spaces:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Wiesbaden
Vieweg+Teubner Verlag
2002
|
Schriftenreihe: | Teubner-Texte zur Mathematik
140 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The book provides a new functional-analytic approach to evolution equations by considering the abstract Cauchy problem in a scale of Banach spaces. Conditions are proved characterizing well-posedness of the linear, time-dependent Cauchy problem in scales of Banach spaces and implying local existence, uniqueness, and regularity of solutions of the quasilinear Cauchy problem. Many applications illustrate the generality of the approach. In particular, using the Fefferman-Phong inequality unifying results on parabolic and hyperbolic equations generalizing classical ones and a unified treatment of Navier-Stokes and Euler equations is described. Assuming only basic knowledge in analysis and functional analysis the book provides all mathematical tools and is aimed for students, graduates, researchers, and lecturers |
Beschreibung: | 1 Online-Ressource (309p) |
ISBN: | 9783322800398 9783519003762 |
ISSN: | 0138-502X |
DOI: | 10.1007/978-3-322-80039-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422353 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2002 |||| o||u| ||||||eng d | ||
020 | |a 9783322800398 |c Online |9 978-3-322-80039-8 | ||
020 | |a 9783519003762 |c Print |9 978-3-519-00376-2 | ||
024 | 7 | |a 10.1007/978-3-322-80039-8 |2 doi | |
035 | |a (OCoLC)863813625 | ||
035 | |a (DE-599)BVBBV042422353 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Caps, Oliver |e Verfasser |4 aut | |
245 | 1 | 0 | |a Evolution Equations in Scales of Banach Spaces |c by Oliver Caps |
264 | 1 | |a Wiesbaden |b Vieweg+Teubner Verlag |c 2002 | |
300 | |a 1 Online-Ressource (309p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Teubner-Texte zur Mathematik |v 140 |x 0138-502X | |
500 | |a The book provides a new functional-analytic approach to evolution equations by considering the abstract Cauchy problem in a scale of Banach spaces. Conditions are proved characterizing well-posedness of the linear, time-dependent Cauchy problem in scales of Banach spaces and implying local existence, uniqueness, and regularity of solutions of the quasilinear Cauchy problem. Many applications illustrate the generality of the approach. In particular, using the Fefferman-Phong inequality unifying results on parabolic and hyperbolic equations generalizing classical ones and a unified treatment of Navier-Stokes and Euler equations is described. Assuming only basic knowledge in analysis and functional analysis the book provides all mathematical tools and is aimed for students, graduates, researchers, and lecturers | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Cauchy-Anfangswertproblem |0 (DE-588)4147404-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Banach-Raum |0 (DE-588)4004402-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Evolutionsgleichung |0 (DE-588)4129061-6 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4123623-3 |a Lehrbuch |2 gnd-content | |
689 | 0 | 0 | |a Evolutionsgleichung |0 (DE-588)4129061-6 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
689 | 1 | 0 | |a Cauchy-Anfangswertproblem |0 (DE-588)4147404-1 |D s |
689 | 1 | |8 3\p |5 DE-604 | |
689 | 2 | 0 | |a Banach-Raum |0 (DE-588)4004402-6 |D s |
689 | 2 | |8 4\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-322-80039-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857770 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096690991104 |
---|---|
any_adam_object | |
author | Caps, Oliver |
author_facet | Caps, Oliver |
author_role | aut |
author_sort | Caps, Oliver |
author_variant | o c oc |
building | Verbundindex |
bvnumber | BV042422353 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863813625 (DE-599)BVBBV042422353 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-322-80039-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02969nmm a2200577zcb4500</leader><controlfield tag="001">BV042422353</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2002 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783322800398</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-322-80039-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783519003762</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-519-00376-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-322-80039-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863813625</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422353</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Caps, Oliver</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Evolution Equations in Scales of Banach Spaces</subfield><subfield code="c">by Oliver Caps</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Wiesbaden</subfield><subfield code="b">Vieweg+Teubner Verlag</subfield><subfield code="c">2002</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (309p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Teubner-Texte zur Mathematik</subfield><subfield code="v">140</subfield><subfield code="x">0138-502X</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The book provides a new functional-analytic approach to evolution equations by considering the abstract Cauchy problem in a scale of Banach spaces. Conditions are proved characterizing well-posedness of the linear, time-dependent Cauchy problem in scales of Banach spaces and implying local existence, uniqueness, and regularity of solutions of the quasilinear Cauchy problem. Many applications illustrate the generality of the approach. In particular, using the Fefferman-Phong inequality unifying results on parabolic and hyperbolic equations generalizing classical ones and a unified treatment of Navier-Stokes and Euler equations is described. Assuming only basic knowledge in analysis and functional analysis the book provides all mathematical tools and is aimed for students, graduates, researchers, and lecturers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Cauchy-Anfangswertproblem</subfield><subfield code="0">(DE-588)4147404-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Evolutionsgleichung</subfield><subfield code="0">(DE-588)4129061-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4123623-3</subfield><subfield code="a">Lehrbuch</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Evolutionsgleichung</subfield><subfield code="0">(DE-588)4129061-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Cauchy-Anfangswertproblem</subfield><subfield code="0">(DE-588)4147404-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-322-80039-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857770</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4123623-3 Lehrbuch gnd-content |
genre_facet | Lehrbuch |
id | DE-604.BV042422353 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783322800398 9783519003762 |
issn | 0138-502X |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857770 |
oclc_num | 863813625 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (309p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2002 |
publishDateSearch | 2002 |
publishDateSort | 2002 |
publisher | Vieweg+Teubner Verlag |
record_format | marc |
series2 | Teubner-Texte zur Mathematik |
spelling | Caps, Oliver Verfasser aut Evolution Equations in Scales of Banach Spaces by Oliver Caps Wiesbaden Vieweg+Teubner Verlag 2002 1 Online-Ressource (309p) txt rdacontent c rdamedia cr rdacarrier Teubner-Texte zur Mathematik 140 0138-502X The book provides a new functional-analytic approach to evolution equations by considering the abstract Cauchy problem in a scale of Banach spaces. Conditions are proved characterizing well-posedness of the linear, time-dependent Cauchy problem in scales of Banach spaces and implying local existence, uniqueness, and regularity of solutions of the quasilinear Cauchy problem. Many applications illustrate the generality of the approach. In particular, using the Fefferman-Phong inequality unifying results on parabolic and hyperbolic equations generalizing classical ones and a unified treatment of Navier-Stokes and Euler equations is described. Assuming only basic knowledge in analysis and functional analysis the book provides all mathematical tools and is aimed for students, graduates, researchers, and lecturers Mathematics Global analysis (Mathematics) Analysis Mathematik Cauchy-Anfangswertproblem (DE-588)4147404-1 gnd rswk-swf Banach-Raum (DE-588)4004402-6 gnd rswk-swf Evolutionsgleichung (DE-588)4129061-6 gnd rswk-swf 1\p (DE-588)4123623-3 Lehrbuch gnd-content Evolutionsgleichung (DE-588)4129061-6 s 2\p DE-604 Cauchy-Anfangswertproblem (DE-588)4147404-1 s 3\p DE-604 Banach-Raum (DE-588)4004402-6 s 4\p DE-604 https://doi.org/10.1007/978-3-322-80039-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Caps, Oliver Evolution Equations in Scales of Banach Spaces Mathematics Global analysis (Mathematics) Analysis Mathematik Cauchy-Anfangswertproblem (DE-588)4147404-1 gnd Banach-Raum (DE-588)4004402-6 gnd Evolutionsgleichung (DE-588)4129061-6 gnd |
subject_GND | (DE-588)4147404-1 (DE-588)4004402-6 (DE-588)4129061-6 (DE-588)4123623-3 |
title | Evolution Equations in Scales of Banach Spaces |
title_auth | Evolution Equations in Scales of Banach Spaces |
title_exact_search | Evolution Equations in Scales of Banach Spaces |
title_full | Evolution Equations in Scales of Banach Spaces by Oliver Caps |
title_fullStr | Evolution Equations in Scales of Banach Spaces by Oliver Caps |
title_full_unstemmed | Evolution Equations in Scales of Banach Spaces by Oliver Caps |
title_short | Evolution Equations in Scales of Banach Spaces |
title_sort | evolution equations in scales of banach spaces |
topic | Mathematics Global analysis (Mathematics) Analysis Mathematik Cauchy-Anfangswertproblem (DE-588)4147404-1 gnd Banach-Raum (DE-588)4004402-6 gnd Evolutionsgleichung (DE-588)4129061-6 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Analysis Mathematik Cauchy-Anfangswertproblem Banach-Raum Evolutionsgleichung Lehrbuch |
url | https://doi.org/10.1007/978-3-322-80039-8 |
work_keys_str_mv | AT capsoliver evolutionequationsinscalesofbanachspaces |