Toeplitz Operators and Index Theory in Several Complex Variables:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
1996
|
Schriftenreihe: | Operator Theory Advances and Applications
81 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | 4. 1 Bergman-Toeplitz Operators Over Bounded Domains 242 4. 2 Hardy-Toeplitz Operators Over Strictly Domains Pseudoconvex 250 Groupoid C* -Algebras 4. 3 256 4. 4 Hardy-Toeplitz Operators Over Tubular Domains 267 4. 5 Bergman-Toeplitz Operators Over Tubular Domains 278 4. 6 Hardy-Toeplitz Operators Over Polycircular Domains 284 4. 7 Bergman-Toeplitz Operators Over Polycircular Domains 290 4. 8 Hopf C* -Algebras 299 4. 9 Actions and Coactions on C* -Algebras 310 4. 10 Hardy-Toeplitz Operators Over K-circular Domains 316 4. 11 Hardy-Toeplitz Operators Over Symmetric Domains 325 4. 12 Bergman-Toeplitz Operators Over Symmetric Domains 361 5. Index Theory for Multivariable Toeplitz Operators 5. 0 Introduction 371 5. 1 K-Theory for Topological Spaces 372 5. 2 Index Theory for Strictly Pseudoconvex Domains 384 5. 3 C*-Algebras K-Theory for 394 5. 4 Index Theory for Symmetric Domains 400 5. 5 Index Theory for Tubular Domains 432 5. 6 Index Theory for Polycircular Domains 455 References 462 Index of Symbols and Notations 471 Introduction Toeplitz operators on the classical Hardy space (on the I-torus) and the closely related Wiener-Hopf operators (on the half-line) form a central part of operator theory, with many applications e. g. , to function theory on the unit disk and to the theory of integral equations |
Beschreibung: | 1 Online-Ressource (XI, 483 p) |
ISBN: | 9783034892469 9783034899604 |
DOI: | 10.1007/978-3-0348-9246-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422334 | ||
003 | DE-604 | ||
005 | 20211216 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1996 |||| o||u| ||||||eng d | ||
020 | |a 9783034892469 |c Online |9 978-3-0348-9246-9 | ||
020 | |a 9783034899604 |c Print |9 978-3-0348-9960-4 | ||
024 | 7 | |a 10.1007/978-3-0348-9246-9 |2 doi | |
035 | |a (OCoLC)1165448676 | ||
035 | |a (DE-599)BVBBV042422334 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Upmeier, Harald |e Verfasser |4 aut | |
245 | 1 | 0 | |a Toeplitz Operators and Index Theory in Several Complex Variables |c by Harald Upmeier |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1996 | |
300 | |a 1 Online-Ressource (XI, 483 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Operator Theory Advances and Applications |v 81 | |
500 | |a 4. 1 Bergman-Toeplitz Operators Over Bounded Domains 242 4. 2 Hardy-Toeplitz Operators Over Strictly Domains Pseudoconvex 250 Groupoid C* -Algebras 4. 3 256 4. 4 Hardy-Toeplitz Operators Over Tubular Domains 267 4. 5 Bergman-Toeplitz Operators Over Tubular Domains 278 4. 6 Hardy-Toeplitz Operators Over Polycircular Domains 284 4. 7 Bergman-Toeplitz Operators Over Polycircular Domains 290 4. 8 Hopf C* -Algebras 299 4. 9 Actions and Coactions on C* -Algebras 310 4. 10 Hardy-Toeplitz Operators Over K-circular Domains 316 4. 11 Hardy-Toeplitz Operators Over Symmetric Domains 325 4. 12 Bergman-Toeplitz Operators Over Symmetric Domains 361 5. Index Theory for Multivariable Toeplitz Operators 5. 0 Introduction 371 5. 1 K-Theory for Topological Spaces 372 5. 2 Index Theory for Strictly Pseudoconvex Domains 384 5. 3 C*-Algebras K-Theory for 394 5. 4 Index Theory for Symmetric Domains 400 5. 5 Index Theory for Tubular Domains 432 5. 6 Index Theory for Polycircular Domains 455 References 462 Index of Symbols and Notations 471 Introduction Toeplitz operators on the classical Hardy space (on the I-torus) and the closely related Wiener-Hopf operators (on the half-line) form a central part of operator theory, with many applications e. g. , to function theory on the unit disk and to the theory of integral equations | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Holomorphe Funktion |0 (DE-588)4025645-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Toeplitz-Operator |0 (DE-588)4191521-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Indextheorie |0 (DE-588)4161489-6 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Toeplitz-Operator |0 (DE-588)4191521-5 |D s |
689 | 0 | 1 | |a Indextheorie |0 (DE-588)4161489-6 |D s |
689 | 0 | 2 | |a Holomorphe Funktion |0 (DE-588)4025645-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
830 | 0 | |a Operator Theory Advances and Applications |v 81 |w (DE-604)BV035421307 |9 81 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-9246-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857751 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096636465152 |
---|---|
any_adam_object | |
author | Upmeier, Harald |
author_facet | Upmeier, Harald |
author_role | aut |
author_sort | Upmeier, Harald |
author_variant | h u hu |
building | Verbundindex |
bvnumber | BV042422334 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165448676 (DE-599)BVBBV042422334 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-9246-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03156nmm a2200505zcb4500</leader><controlfield tag="001">BV042422334</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20211216 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034892469</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-9246-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034899604</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9960-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-9246-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165448676</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422334</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Upmeier, Harald</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Toeplitz Operators and Index Theory in Several Complex Variables</subfield><subfield code="c">by Harald Upmeier</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 483 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Operator Theory Advances and Applications</subfield><subfield code="v">81</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">4. 1 Bergman-Toeplitz Operators Over Bounded Domains 242 4. 2 Hardy-Toeplitz Operators Over Strictly Domains Pseudoconvex 250 Groupoid C* -Algebras 4. 3 256 4. 4 Hardy-Toeplitz Operators Over Tubular Domains 267 4. 5 Bergman-Toeplitz Operators Over Tubular Domains 278 4. 6 Hardy-Toeplitz Operators Over Polycircular Domains 284 4. 7 Bergman-Toeplitz Operators Over Polycircular Domains 290 4. 8 Hopf C* -Algebras 299 4. 9 Actions and Coactions on C* -Algebras 310 4. 10 Hardy-Toeplitz Operators Over K-circular Domains 316 4. 11 Hardy-Toeplitz Operators Over Symmetric Domains 325 4. 12 Bergman-Toeplitz Operators Over Symmetric Domains 361 5. Index Theory for Multivariable Toeplitz Operators 5. 0 Introduction 371 5. 1 K-Theory for Topological Spaces 372 5. 2 Index Theory for Strictly Pseudoconvex Domains 384 5. 3 C*-Algebras K-Theory for 394 5. 4 Index Theory for Symmetric Domains 400 5. 5 Index Theory for Tubular Domains 432 5. 6 Index Theory for Polycircular Domains 455 References 462 Index of Symbols and Notations 471 Introduction Toeplitz operators on the classical Hardy space (on the I-torus) and the closely related Wiener-Hopf operators (on the half-line) form a central part of operator theory, with many applications e. g. , to function theory on the unit disk and to the theory of integral equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Holomorphe Funktion</subfield><subfield code="0">(DE-588)4025645-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Toeplitz-Operator</subfield><subfield code="0">(DE-588)4191521-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Indextheorie</subfield><subfield code="0">(DE-588)4161489-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Toeplitz-Operator</subfield><subfield code="0">(DE-588)4191521-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Indextheorie</subfield><subfield code="0">(DE-588)4161489-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Holomorphe Funktion</subfield><subfield code="0">(DE-588)4025645-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Operator Theory Advances and Applications</subfield><subfield code="v">81</subfield><subfield code="w">(DE-604)BV035421307</subfield><subfield code="9">81</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-9246-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857751</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422334 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783034892469 9783034899604 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857751 |
oclc_num | 1165448676 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XI, 483 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Birkhäuser Basel |
record_format | marc |
series | Operator Theory Advances and Applications |
series2 | Operator Theory Advances and Applications |
spelling | Upmeier, Harald Verfasser aut Toeplitz Operators and Index Theory in Several Complex Variables by Harald Upmeier Basel Birkhäuser Basel 1996 1 Online-Ressource (XI, 483 p) txt rdacontent c rdamedia cr rdacarrier Operator Theory Advances and Applications 81 4. 1 Bergman-Toeplitz Operators Over Bounded Domains 242 4. 2 Hardy-Toeplitz Operators Over Strictly Domains Pseudoconvex 250 Groupoid C* -Algebras 4. 3 256 4. 4 Hardy-Toeplitz Operators Over Tubular Domains 267 4. 5 Bergman-Toeplitz Operators Over Tubular Domains 278 4. 6 Hardy-Toeplitz Operators Over Polycircular Domains 284 4. 7 Bergman-Toeplitz Operators Over Polycircular Domains 290 4. 8 Hopf C* -Algebras 299 4. 9 Actions and Coactions on C* -Algebras 310 4. 10 Hardy-Toeplitz Operators Over K-circular Domains 316 4. 11 Hardy-Toeplitz Operators Over Symmetric Domains 325 4. 12 Bergman-Toeplitz Operators Over Symmetric Domains 361 5. Index Theory for Multivariable Toeplitz Operators 5. 0 Introduction 371 5. 1 K-Theory for Topological Spaces 372 5. 2 Index Theory for Strictly Pseudoconvex Domains 384 5. 3 C*-Algebras K-Theory for 394 5. 4 Index Theory for Symmetric Domains 400 5. 5 Index Theory for Tubular Domains 432 5. 6 Index Theory for Polycircular Domains 455 References 462 Index of Symbols and Notations 471 Introduction Toeplitz operators on the classical Hardy space (on the I-torus) and the closely related Wiener-Hopf operators (on the half-line) form a central part of operator theory, with many applications e. g. , to function theory on the unit disk and to the theory of integral equations Mathematics Mathematics, general Mathematik Holomorphe Funktion (DE-588)4025645-5 gnd rswk-swf Toeplitz-Operator (DE-588)4191521-5 gnd rswk-swf Indextheorie (DE-588)4161489-6 gnd rswk-swf Toeplitz-Operator (DE-588)4191521-5 s Indextheorie (DE-588)4161489-6 s Holomorphe Funktion (DE-588)4025645-5 s 1\p DE-604 Operator Theory Advances and Applications 81 (DE-604)BV035421307 81 https://doi.org/10.1007/978-3-0348-9246-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Upmeier, Harald Toeplitz Operators and Index Theory in Several Complex Variables Operator Theory Advances and Applications Mathematics Mathematics, general Mathematik Holomorphe Funktion (DE-588)4025645-5 gnd Toeplitz-Operator (DE-588)4191521-5 gnd Indextheorie (DE-588)4161489-6 gnd |
subject_GND | (DE-588)4025645-5 (DE-588)4191521-5 (DE-588)4161489-6 |
title | Toeplitz Operators and Index Theory in Several Complex Variables |
title_auth | Toeplitz Operators and Index Theory in Several Complex Variables |
title_exact_search | Toeplitz Operators and Index Theory in Several Complex Variables |
title_full | Toeplitz Operators and Index Theory in Several Complex Variables by Harald Upmeier |
title_fullStr | Toeplitz Operators and Index Theory in Several Complex Variables by Harald Upmeier |
title_full_unstemmed | Toeplitz Operators and Index Theory in Several Complex Variables by Harald Upmeier |
title_short | Toeplitz Operators and Index Theory in Several Complex Variables |
title_sort | toeplitz operators and index theory in several complex variables |
topic | Mathematics Mathematics, general Mathematik Holomorphe Funktion (DE-588)4025645-5 gnd Toeplitz-Operator (DE-588)4191521-5 gnd Indextheorie (DE-588)4161489-6 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Holomorphe Funktion Toeplitz-Operator Indextheorie |
url | https://doi.org/10.1007/978-3-0348-9246-9 |
volume_link | (DE-604)BV035421307 |
work_keys_str_mv | AT upmeierharald toeplitzoperatorsandindextheoryinseveralcomplexvariables |