Sub-Riemannian Geometry:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
1996
|
Schriftenreihe: | Progress in Mathematics
144 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Sub-Riemannian geometry (also known as Carnot geometry in France, and non-holonomic Riemannian geometry in Russia) has been a full research domain for fifteen years, with motivations and ramifications in several parts of pure and applied mathematics, namely: • control theory • classical mechanics • Riemannian geometry (of which sub-Riemannian geometry constitutes a natural generalization, and where sub-Riemannian metrics may appear as limit cases) • diffusion on manifolds • analysis of hypoelliptic operators • Cauchy-Riemann (or CR) geometry. Although links between these domains had been foreseen by many authors in the past, it is only in recent years that sub- Riemannian geometry has been recognized as a possible common framework for all these topics. This book provides an introduction to sub-Riemannian geometry and presents the state of the art and open problems in the field. It consists of five coherent and original articles by the leading specialists: • André Bellaïche: The tangent space in sub-Riemannian geometry • Mikhael Gromov: Carnot-Carathéodory spaces seen from within • Richard Montgomery: Survey of singular geodesics • Héctor J. Sussmann: A cornucopia of four-dimensional abnormal sub-Riemannian minimizers • Jean-Michel Coron: Stabilization of controllable systems |
Beschreibung: | 1 Online-Ressource (VIII, 398 p) |
ISBN: | 9783034892100 9783034899468 |
DOI: | 10.1007/978-3-0348-9210-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422327 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1996 |||| o||u| ||||||eng d | ||
020 | |a 9783034892100 |c Online |9 978-3-0348-9210-0 | ||
020 | |a 9783034899468 |c Print |9 978-3-0348-9946-8 | ||
024 | 7 | |a 10.1007/978-3-0348-9210-0 |2 doi | |
035 | |a (OCoLC)863766911 | ||
035 | |a (DE-599)BVBBV042422327 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.36 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Bellaïche, André |e Verfasser |4 aut | |
245 | 1 | 0 | |a Sub-Riemannian Geometry |c edited by André Bellaïche, Jean-Jacques Risler |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1996 | |
300 | |a 1 Online-Ressource (VIII, 398 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Mathematics |v 144 | |
500 | |a Sub-Riemannian geometry (also known as Carnot geometry in France, and non-holonomic Riemannian geometry in Russia) has been a full research domain for fifteen years, with motivations and ramifications in several parts of pure and applied mathematics, namely: • control theory • classical mechanics • Riemannian geometry (of which sub-Riemannian geometry constitutes a natural generalization, and where sub-Riemannian metrics may appear as limit cases) • diffusion on manifolds • analysis of hypoelliptic operators • Cauchy-Riemann (or CR) geometry. Although links between these domains had been foreseen by many authors in the past, it is only in recent years that sub- Riemannian geometry has been recognized as a possible common framework for all these topics. This book provides an introduction to sub-Riemannian geometry and presents the state of the art and open problems in the field. It consists of five coherent and original articles by the leading specialists: • André Bellaïche: The tangent space in sub-Riemannian geometry • Mikhael Gromov: Carnot-Carathéodory spaces seen from within • Richard Montgomery: Survey of singular geodesics • Héctor J. Sussmann: A cornucopia of four-dimensional abnormal sub-Riemannian minimizers • Jean-Michel Coron: Stabilization of controllable systems | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Global Analysis and Analysis on Manifolds | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Riemannsche Geometrie |0 (DE-588)4128462-8 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Riemannsche Geometrie |0 (DE-588)4128462-8 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Risler, Jean-Jacques |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-9210-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857744 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096622833664 |
---|---|
any_adam_object | |
author | Bellaïche, André |
author_facet | Bellaïche, André |
author_role | aut |
author_sort | Bellaïche, André |
author_variant | a b ab |
building | Verbundindex |
bvnumber | BV042422327 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863766911 (DE-599)BVBBV042422327 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-9210-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03159nmm a2200517zcb4500</leader><controlfield tag="001">BV042422327</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034892100</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-9210-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034899468</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9946-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-9210-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863766911</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422327</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bellaïche, André</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Sub-Riemannian Geometry</subfield><subfield code="c">edited by André Bellaïche, Jean-Jacques Risler</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 398 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">144</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Sub-Riemannian geometry (also known as Carnot geometry in France, and non-holonomic Riemannian geometry in Russia) has been a full research domain for fifteen years, with motivations and ramifications in several parts of pure and applied mathematics, namely: • control theory • classical mechanics • Riemannian geometry (of which sub-Riemannian geometry constitutes a natural generalization, and where sub-Riemannian metrics may appear as limit cases) • diffusion on manifolds • analysis of hypoelliptic operators • Cauchy-Riemann (or CR) geometry. Although links between these domains had been foreseen by many authors in the past, it is only in recent years that sub- Riemannian geometry has been recognized as a possible common framework for all these topics. This book provides an introduction to sub-Riemannian geometry and presents the state of the art and open problems in the field. It consists of five coherent and original articles by the leading specialists: • André Bellaïche: The tangent space in sub-Riemannian geometry • Mikhael Gromov: Carnot-Carathéodory spaces seen from within • Richard Montgomery: Survey of singular geodesics • Héctor J. Sussmann: A cornucopia of four-dimensional abnormal sub-Riemannian minimizers • Jean-Michel Coron: Stabilization of controllable systems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Analysis and Analysis on Manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Risler, Jean-Jacques</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-9210-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857744</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV042422327 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783034892100 9783034899468 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857744 |
oclc_num | 863766911 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 398 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Progress in Mathematics |
spelling | Bellaïche, André Verfasser aut Sub-Riemannian Geometry edited by André Bellaïche, Jean-Jacques Risler Basel Birkhäuser Basel 1996 1 Online-Ressource (VIII, 398 p) txt rdacontent c rdamedia cr rdacarrier Progress in Mathematics 144 Sub-Riemannian geometry (also known as Carnot geometry in France, and non-holonomic Riemannian geometry in Russia) has been a full research domain for fifteen years, with motivations and ramifications in several parts of pure and applied mathematics, namely: • control theory • classical mechanics • Riemannian geometry (of which sub-Riemannian geometry constitutes a natural generalization, and where sub-Riemannian metrics may appear as limit cases) • diffusion on manifolds • analysis of hypoelliptic operators • Cauchy-Riemann (or CR) geometry. Although links between these domains had been foreseen by many authors in the past, it is only in recent years that sub- Riemannian geometry has been recognized as a possible common framework for all these topics. This book provides an introduction to sub-Riemannian geometry and presents the state of the art and open problems in the field. It consists of five coherent and original articles by the leading specialists: • André Bellaïche: The tangent space in sub-Riemannian geometry • Mikhael Gromov: Carnot-Carathéodory spaces seen from within • Richard Montgomery: Survey of singular geodesics • Héctor J. Sussmann: A cornucopia of four-dimensional abnormal sub-Riemannian minimizers • Jean-Michel Coron: Stabilization of controllable systems Mathematics Global analysis Global differential geometry Differential Geometry Global Analysis and Analysis on Manifolds Mathematik Riemannsche Geometrie (DE-588)4128462-8 gnd rswk-swf 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content Riemannsche Geometrie (DE-588)4128462-8 s 2\p DE-604 Risler, Jean-Jacques Sonstige oth https://doi.org/10.1007/978-3-0348-9210-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bellaïche, André Sub-Riemannian Geometry Mathematics Global analysis Global differential geometry Differential Geometry Global Analysis and Analysis on Manifolds Mathematik Riemannsche Geometrie (DE-588)4128462-8 gnd |
subject_GND | (DE-588)4128462-8 (DE-588)4143413-4 |
title | Sub-Riemannian Geometry |
title_auth | Sub-Riemannian Geometry |
title_exact_search | Sub-Riemannian Geometry |
title_full | Sub-Riemannian Geometry edited by André Bellaïche, Jean-Jacques Risler |
title_fullStr | Sub-Riemannian Geometry edited by André Bellaïche, Jean-Jacques Risler |
title_full_unstemmed | Sub-Riemannian Geometry edited by André Bellaïche, Jean-Jacques Risler |
title_short | Sub-Riemannian Geometry |
title_sort | sub riemannian geometry |
topic | Mathematics Global analysis Global differential geometry Differential Geometry Global Analysis and Analysis on Manifolds Mathematik Riemannsche Geometrie (DE-588)4128462-8 gnd |
topic_facet | Mathematics Global analysis Global differential geometry Differential Geometry Global Analysis and Analysis on Manifolds Mathematik Riemannsche Geometrie Aufsatzsammlung |
url | https://doi.org/10.1007/978-3-0348-9210-0 |
work_keys_str_mv | AT bellaicheandre subriemanniangeometry AT rislerjeanjacques subriemanniangeometry |