The Asymptotic Behaviour of Semigroups of Linear Operators:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
1996
|
Schriftenreihe: | Operator Theory: Advances and Applications
88 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Over the past ten years, the asymptotic theory of one-parameter semigroups of operators has witnessed an explosive development. A number oflong-standing open problems have recently been solved and the theory seems to have obtained a certain degree of maturity. These notes, based on a course delivered at the University of Tiibingen in the academic year 1994-1995, represent a first attempt to organize the available material, most of which exists only in the form of research papers. If A is a bounded linear operator on a complex Banach space X, then it is an easy consequence of the spectral mapping theorem exp(tO"(A)) = O"(exp(tA)), t E JR, and Gelfand's formula for the spectral radius that the uniform growth bound of the wt family {exp(tA)h~o, i. e. the infimum of all wE JR such that II exp(tA)II :::: Me for some constant M and all t 2: 0, is equal to the spectral bound s(A) = sup{Re A : A E O"(A)} of A. This fact is known as Lyapunov's theorem. Its importance resides in the fact that the solutions of the initial value problem du(t) =A () dt u t , u(O) = x, are given by u(t) = exp(tA)x. Thus, Lyapunov's theorem implies that the expo nential growth of the solutions of the initial value problem associated to a bounded operator A is determined by the location of the spectrum of A. |
Beschreibung: | 1 Online-Ressource (XII, 241 p) |
ISBN: | 9783034892063 9783034899444 |
DOI: | 10.1007/978-3-0348-9206-3 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422325 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1996 |||| o||u| ||||||eng d | ||
020 | |a 9783034892063 |c Online |9 978-3-0348-9206-3 | ||
020 | |a 9783034899444 |c Print |9 978-3-0348-9944-4 | ||
024 | 7 | |a 10.1007/978-3-0348-9206-3 |2 doi | |
035 | |a (OCoLC)863756706 | ||
035 | |a (DE-599)BVBBV042422325 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.724 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Neerven, Jan |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Asymptotic Behaviour of Semigroups of Linear Operators |c by Jan Neerven |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1996 | |
300 | |a 1 Online-Ressource (XII, 241 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Operator Theory: Advances and Applications |v 88 | |
500 | |a Over the past ten years, the asymptotic theory of one-parameter semigroups of operators has witnessed an explosive development. A number oflong-standing open problems have recently been solved and the theory seems to have obtained a certain degree of maturity. These notes, based on a course delivered at the University of Tiibingen in the academic year 1994-1995, represent a first attempt to organize the available material, most of which exists only in the form of research papers. If A is a bounded linear operator on a complex Banach space X, then it is an easy consequence of the spectral mapping theorem exp(tO"(A)) = O"(exp(tA)), t E JR, and Gelfand's formula for the spectral radius that the uniform growth bound of the wt family {exp(tA)h~o, i. e. the infimum of all wE JR such that II exp(tA)II :::: Me for some constant M and all t 2: 0, is equal to the spectral bound s(A) = sup{Re A : A E O"(A)} of A. This fact is known as Lyapunov's theorem. Its importance resides in the fact that the solutions of the initial value problem du(t) =A () dt u t , u(O) = x, are given by u(t) = exp(tA)x. Thus, Lyapunov's theorem implies that the expo nential growth of the solutions of the initial value problem associated to a bounded operator A is determined by the location of the spectrum of A. | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Functional analysis | |
650 | 4 | |a Operator theory | |
650 | 4 | |a Operator Theory | |
650 | 4 | |a Functional Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Banach-Raum |0 (DE-588)4004402-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Asymptotische Darstellung |0 (DE-588)4003339-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Halbgruppe |0 (DE-588)4022990-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Linearer Operator |0 (DE-588)4167721-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Banach-Raum |0 (DE-588)4004402-6 |D s |
689 | 0 | 1 | |a Linearer Operator |0 (DE-588)4167721-3 |D s |
689 | 0 | 2 | |a Halbgruppe |0 (DE-588)4022990-7 |D s |
689 | 0 | 3 | |a Asymptotische Darstellung |0 (DE-588)4003339-9 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-9206-3 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857742 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096620736512 |
---|---|
any_adam_object | |
author | Neerven, Jan |
author_facet | Neerven, Jan |
author_role | aut |
author_sort | Neerven, Jan |
author_variant | j n jn |
building | Verbundindex |
bvnumber | BV042422325 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863756706 (DE-599)BVBBV042422325 |
dewey-full | 515.724 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.724 |
dewey-search | 515.724 |
dewey-sort | 3515.724 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-9206-3 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03263nmm a2200553zcb4500</leader><controlfield tag="001">BV042422325</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1996 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034892063</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-9206-3</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034899444</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9944-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-9206-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863756706</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422325</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.724</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Neerven, Jan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Asymptotic Behaviour of Semigroups of Linear Operators</subfield><subfield code="c">by Jan Neerven</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1996</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 241 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Operator Theory: Advances and Applications</subfield><subfield code="v">88</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Over the past ten years, the asymptotic theory of one-parameter semigroups of operators has witnessed an explosive development. A number oflong-standing open problems have recently been solved and the theory seems to have obtained a certain degree of maturity. These notes, based on a course delivered at the University of Tiibingen in the academic year 1994-1995, represent a first attempt to organize the available material, most of which exists only in the form of research papers. If A is a bounded linear operator on a complex Banach space X, then it is an easy consequence of the spectral mapping theorem exp(tO"(A)) = O"(exp(tA)), t E JR, and Gelfand's formula for the spectral radius that the uniform growth bound of the wt family {exp(tA)h~o, i. e. the infimum of all wE JR such that II exp(tA)II :::: Me for some constant M and all t 2: 0, is equal to the spectral bound s(A) = sup{Re A : A E O"(A)} of A. This fact is known as Lyapunov's theorem. Its importance resides in the fact that the solutions of the initial value problem du(t) =A () dt u t , u(O) = x, are given by u(t) = exp(tA)x. Thus, Lyapunov's theorem implies that the expo nential growth of the solutions of the initial value problem associated to a bounded operator A is determined by the location of the spectrum of A.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Operator Theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Functional Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Asymptotische Darstellung</subfield><subfield code="0">(DE-588)4003339-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Halbgruppe</subfield><subfield code="0">(DE-588)4022990-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Linearer Operator</subfield><subfield code="0">(DE-588)4167721-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Banach-Raum</subfield><subfield code="0">(DE-588)4004402-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Linearer Operator</subfield><subfield code="0">(DE-588)4167721-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Halbgruppe</subfield><subfield code="0">(DE-588)4022990-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Asymptotische Darstellung</subfield><subfield code="0">(DE-588)4003339-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-9206-3</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857742</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422325 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:11Z |
institution | BVB |
isbn | 9783034892063 9783034899444 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857742 |
oclc_num | 863756706 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 241 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1996 |
publishDateSearch | 1996 |
publishDateSort | 1996 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Operator Theory: Advances and Applications |
spelling | Neerven, Jan Verfasser aut The Asymptotic Behaviour of Semigroups of Linear Operators by Jan Neerven Basel Birkhäuser Basel 1996 1 Online-Ressource (XII, 241 p) txt rdacontent c rdamedia cr rdacarrier Operator Theory: Advances and Applications 88 Over the past ten years, the asymptotic theory of one-parameter semigroups of operators has witnessed an explosive development. A number oflong-standing open problems have recently been solved and the theory seems to have obtained a certain degree of maturity. These notes, based on a course delivered at the University of Tiibingen in the academic year 1994-1995, represent a first attempt to organize the available material, most of which exists only in the form of research papers. If A is a bounded linear operator on a complex Banach space X, then it is an easy consequence of the spectral mapping theorem exp(tO"(A)) = O"(exp(tA)), t E JR, and Gelfand's formula for the spectral radius that the uniform growth bound of the wt family {exp(tA)h~o, i. e. the infimum of all wE JR such that II exp(tA)II :::: Me for some constant M and all t 2: 0, is equal to the spectral bound s(A) = sup{Re A : A E O"(A)} of A. This fact is known as Lyapunov's theorem. Its importance resides in the fact that the solutions of the initial value problem du(t) =A () dt u t , u(O) = x, are given by u(t) = exp(tA)x. Thus, Lyapunov's theorem implies that the expo nential growth of the solutions of the initial value problem associated to a bounded operator A is determined by the location of the spectrum of A. Mathematics Functional analysis Operator theory Operator Theory Functional Analysis Mathematik Banach-Raum (DE-588)4004402-6 gnd rswk-swf Asymptotische Darstellung (DE-588)4003339-9 gnd rswk-swf Halbgruppe (DE-588)4022990-7 gnd rswk-swf Linearer Operator (DE-588)4167721-3 gnd rswk-swf Banach-Raum (DE-588)4004402-6 s Linearer Operator (DE-588)4167721-3 s Halbgruppe (DE-588)4022990-7 s Asymptotische Darstellung (DE-588)4003339-9 s 1\p DE-604 https://doi.org/10.1007/978-3-0348-9206-3 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Neerven, Jan The Asymptotic Behaviour of Semigroups of Linear Operators Mathematics Functional analysis Operator theory Operator Theory Functional Analysis Mathematik Banach-Raum (DE-588)4004402-6 gnd Asymptotische Darstellung (DE-588)4003339-9 gnd Halbgruppe (DE-588)4022990-7 gnd Linearer Operator (DE-588)4167721-3 gnd |
subject_GND | (DE-588)4004402-6 (DE-588)4003339-9 (DE-588)4022990-7 (DE-588)4167721-3 |
title | The Asymptotic Behaviour of Semigroups of Linear Operators |
title_auth | The Asymptotic Behaviour of Semigroups of Linear Operators |
title_exact_search | The Asymptotic Behaviour of Semigroups of Linear Operators |
title_full | The Asymptotic Behaviour of Semigroups of Linear Operators by Jan Neerven |
title_fullStr | The Asymptotic Behaviour of Semigroups of Linear Operators by Jan Neerven |
title_full_unstemmed | The Asymptotic Behaviour of Semigroups of Linear Operators by Jan Neerven |
title_short | The Asymptotic Behaviour of Semigroups of Linear Operators |
title_sort | the asymptotic behaviour of semigroups of linear operators |
topic | Mathematics Functional analysis Operator theory Operator Theory Functional Analysis Mathematik Banach-Raum (DE-588)4004402-6 gnd Asymptotische Darstellung (DE-588)4003339-9 gnd Halbgruppe (DE-588)4022990-7 gnd Linearer Operator (DE-588)4167721-3 gnd |
topic_facet | Mathematics Functional analysis Operator theory Operator Theory Functional Analysis Mathematik Banach-Raum Asymptotische Darstellung Halbgruppe Linearer Operator |
url | https://doi.org/10.1007/978-3-0348-9206-3 |
work_keys_str_mv | AT neervenjan theasymptoticbehaviourofsemigroupsoflinearoperators |