Huygens and Barrow, Newton and Hooke: Pioneers in mathematical analysis and catastrophe theory from evolvents to quasicrystals
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
1990
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Translated from the Russian by E.J.F. Primrose "Remarkable little book." -SIAM REVIEW V.I. Arnold, who is renowned for his lively style, retraces the beginnings of mathematical analysis and theoretical physics in the works (and the intrigues!) of the great scientists of the 17th century. Some of Huygens' and Newton's ideas. several centuries ahead of their time, were developed only recently. The author follows the link between their inception and the breakthroughs in contemporary mathematics and physics. The book provides present-day generalizations of Newton's theorems on the elliptical shape of orbits and on the transcendence of abelian integrals; it offers a brief review of the theory of regular and chaotic movement in celestial mechanics, including the problem of ports in the distribution of smaller planets and a discussion of the structure of planetary rings |
Beschreibung: | 1 Online-Ressource (118 p.) 1 illus |
ISBN: | 9783034891295 9783764323837 |
DOI: | 10.1007/978-3-0348-9129-5 |
Internformat
MARC
LEADER | 00000nam a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422305 | ||
003 | DE-604 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1990 xx a||| o|||| 00||| eng d | ||
020 | |a 9783034891295 |c Online |9 978-3-0348-9129-5 | ||
020 | |a 9783764323837 |c Print |9 978-3-7643-2383-7 | ||
024 | 7 | |a 10.1007/978-3-0348-9129-5 |2 doi | |
035 | |a (OCoLC)863785960 | ||
035 | |a (DE-599)BVBBV042422305 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Arnol’d, V. I. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Huygens and Barrow, Newton and Hooke |b Pioneers in mathematical analysis and catastrophe theory from evolvents to quasicrystals |c by V. I. Arnol’d |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1990 | |
300 | |a 1 Online-Ressource (118 p.) |b 1 illus | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
500 | |a Translated from the Russian by E.J.F. Primrose "Remarkable little book." -SIAM REVIEW V.I. Arnold, who is renowned for his lively style, retraces the beginnings of mathematical analysis and theoretical physics in the works (and the intrigues!) of the great scientists of the 17th century. Some of Huygens' and Newton's ideas. several centuries ahead of their time, were developed only recently. The author follows the link between their inception and the breakthroughs in contemporary mathematics and physics. The book provides present-day generalizations of Newton's theorems on the elliptical shape of orbits and on the transcendence of abelian integrals; it offers a brief review of the theory of regular and chaotic movement in celestial mechanics, including the problem of ports in the distribution of smaller planets and a discussion of the structure of planetary rings | ||
648 | 7 | |a Geschichte 1650-1800 |2 gnd |9 rswk-swf | |
648 | 7 | |a Geschichte 1600-1700 |2 gnd |9 rswk-swf | |
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Mathematische Physik |0 (DE-588)4037952-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Physik |0 (DE-588)4045956-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Analysis |0 (DE-588)4001865-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Geschichte |0 (DE-588)4020517-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Physik |0 (DE-588)4045956-1 |D s |
689 | 0 | 1 | |a Geschichte 1650-1800 |A z |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Mathematische Physik |0 (DE-588)4037952-8 |D s |
689 | 1 | 1 | |a Geschichte 1600-1700 |A z |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Analysis |0 (DE-588)4001865-9 |D s |
689 | 2 | 1 | |a Geschichte |0 (DE-588)4020517-4 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Physik |0 (DE-588)4045956-1 |D s |
689 | 3 | 1 | |a Geschichte |0 (DE-588)4020517-4 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-9129-5 |x Verlag |3 Volltext |
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
912 | |a ZDB-2-SMA | ||
912 | |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
943 | 1 | |a oai:aleph.bib-bvb.de:BVB01-027857722 |
Datensatz im Suchindex
_version_ | 1824627604876951552 |
---|---|
adam_text | |
any_adam_object | |
author | Arnol’d, V. I. |
author_facet | Arnol’d, V. I. |
author_role | aut |
author_sort | Arnol’d, V. I. |
author_variant | v i a vi via |
building | Verbundindex |
bvnumber | BV042422305 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863785960 (DE-599)BVBBV042422305 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-9129-5 |
era | Geschichte 1650-1800 gnd Geschichte 1600-1700 gnd |
era_facet | Geschichte 1650-1800 Geschichte 1600-1700 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>00000nam a2200000zc 4500</leader><controlfield tag="001">BV042422305</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1990 xx a||| o|||| 00||| eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034891295</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-9129-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764323837</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-7643-2383-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-9129-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863785960</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422305</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Arnol’d, V. I.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Huygens and Barrow, Newton and Hooke</subfield><subfield code="b">Pioneers in mathematical analysis and catastrophe theory from evolvents to quasicrystals</subfield><subfield code="c">by V. I. Arnol’d</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1990</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (118 p.)</subfield><subfield code="b">1 illus</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Translated from the Russian by E.J.F. Primrose "Remarkable little book." -SIAM REVIEW V.I. Arnold, who is renowned for his lively style, retraces the beginnings of mathematical analysis and theoretical physics in the works (and the intrigues!) of the great scientists of the 17th century. Some of Huygens' and Newton's ideas. several centuries ahead of their time, were developed only recently. The author follows the link between their inception and the breakthroughs in contemporary mathematics and physics. The book provides present-day generalizations of Newton's theorems on the elliptical shape of orbits and on the transcendence of abelian integrals; it offers a brief review of the theory of regular and chaotic movement in celestial mechanics, including the problem of ports in the distribution of smaller planets and a discussion of the structure of planetary rings</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte 1650-1800</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="648" ind1=" " ind2="7"><subfield code="a">Geschichte 1600-1700</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geschichte</subfield><subfield code="0">(DE-588)4020517-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geschichte 1650-1800</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Mathematische Physik</subfield><subfield code="0">(DE-588)4037952-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Geschichte 1600-1700</subfield><subfield code="A">z</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Analysis</subfield><subfield code="0">(DE-588)4001865-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Geschichte</subfield><subfield code="0">(DE-588)4020517-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Physik</subfield><subfield code="0">(DE-588)4045956-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2="1"><subfield code="a">Geschichte</subfield><subfield code="0">(DE-588)4020517-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-9129-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="943" ind1="1" ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857722</subfield></datafield></record></collection> |
id | DE-604.BV042422305 |
illustrated | Illustrated |
indexdate | 2025-02-21T01:14:43Z |
institution | BVB |
isbn | 9783034891295 9783764323837 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857722 |
oclc_num | 863785960 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (118 p.) 1 illus |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1990 |
publishDateSearch | 1990 |
publishDateSort | 1990 |
publisher | Birkhäuser Basel |
record_format | marc |
spelling | Arnol’d, V. I. Verfasser aut Huygens and Barrow, Newton and Hooke Pioneers in mathematical analysis and catastrophe theory from evolvents to quasicrystals by V. I. Arnol’d Basel Birkhäuser Basel 1990 1 Online-Ressource (118 p.) 1 illus txt rdacontent c rdamedia cr rdacarrier Translated from the Russian by E.J.F. Primrose "Remarkable little book." -SIAM REVIEW V.I. Arnold, who is renowned for his lively style, retraces the beginnings of mathematical analysis and theoretical physics in the works (and the intrigues!) of the great scientists of the 17th century. Some of Huygens' and Newton's ideas. several centuries ahead of their time, were developed only recently. The author follows the link between their inception and the breakthroughs in contemporary mathematics and physics. The book provides present-day generalizations of Newton's theorems on the elliptical shape of orbits and on the transcendence of abelian integrals; it offers a brief review of the theory of regular and chaotic movement in celestial mechanics, including the problem of ports in the distribution of smaller planets and a discussion of the structure of planetary rings Geschichte 1650-1800 gnd rswk-swf Geschichte 1600-1700 gnd rswk-swf Mathematics Global analysis (Mathematics) Analysis Mathematik Mathematische Physik (DE-588)4037952-8 gnd rswk-swf Physik (DE-588)4045956-1 gnd rswk-swf Analysis (DE-588)4001865-9 gnd rswk-swf Geschichte (DE-588)4020517-4 gnd rswk-swf Physik (DE-588)4045956-1 s Geschichte 1650-1800 z 1\p DE-604 Mathematische Physik (DE-588)4037952-8 s Geschichte 1600-1700 z 2\p DE-604 Analysis (DE-588)4001865-9 s Geschichte (DE-588)4020517-4 s 3\p DE-604 4\p DE-604 https://doi.org/10.1007/978-3-0348-9129-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Arnol’d, V. I. Huygens and Barrow, Newton and Hooke Pioneers in mathematical analysis and catastrophe theory from evolvents to quasicrystals Mathematics Global analysis (Mathematics) Analysis Mathematik Mathematische Physik (DE-588)4037952-8 gnd Physik (DE-588)4045956-1 gnd Analysis (DE-588)4001865-9 gnd Geschichte (DE-588)4020517-4 gnd |
subject_GND | (DE-588)4037952-8 (DE-588)4045956-1 (DE-588)4001865-9 (DE-588)4020517-4 |
title | Huygens and Barrow, Newton and Hooke Pioneers in mathematical analysis and catastrophe theory from evolvents to quasicrystals |
title_auth | Huygens and Barrow, Newton and Hooke Pioneers in mathematical analysis and catastrophe theory from evolvents to quasicrystals |
title_exact_search | Huygens and Barrow, Newton and Hooke Pioneers in mathematical analysis and catastrophe theory from evolvents to quasicrystals |
title_full | Huygens and Barrow, Newton and Hooke Pioneers in mathematical analysis and catastrophe theory from evolvents to quasicrystals by V. I. Arnol’d |
title_fullStr | Huygens and Barrow, Newton and Hooke Pioneers in mathematical analysis and catastrophe theory from evolvents to quasicrystals by V. I. Arnol’d |
title_full_unstemmed | Huygens and Barrow, Newton and Hooke Pioneers in mathematical analysis and catastrophe theory from evolvents to quasicrystals by V. I. Arnol’d |
title_short | Huygens and Barrow, Newton and Hooke |
title_sort | huygens and barrow newton and hooke pioneers in mathematical analysis and catastrophe theory from evolvents to quasicrystals |
title_sub | Pioneers in mathematical analysis and catastrophe theory from evolvents to quasicrystals |
topic | Mathematics Global analysis (Mathematics) Analysis Mathematik Mathematische Physik (DE-588)4037952-8 gnd Physik (DE-588)4045956-1 gnd Analysis (DE-588)4001865-9 gnd Geschichte (DE-588)4020517-4 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Analysis Mathematik Mathematische Physik Physik Geschichte |
url | https://doi.org/10.1007/978-3-0348-9129-5 |
work_keys_str_mv | AT arnoldvi huygensandbarrownewtonandhookepioneersinmathematicalanalysisandcatastrophetheoryfromevolventstoquasicrystals |