Transport Simulation in Microelectronics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
1995
|
Schriftenreihe: | Progress in Numerical Simulation for Microelectronics
3 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Computer simulation of semiconductor processing equipment and devices requires the use of a wide variety of numerical methods. Of these methods, the Monte Carlo approach is perhaps most fundamentally suited to mod eling physical events occurring on microscopic scales which are intricately connected to the particle structure of nature. Here physical phenomena can be simulated by following simulation particles (such as electrons, molecules, photons, etc. ) through a statistical sampling of scattering events. Monte Carlo is, however, generally looked on as a last resort due to the extremely slow convergence of these methods. It is of interest, then, to examine when in microelectronics it is necessary to use Monte Carlo methods, how such methods may be improved, and what are the alternatives. This book ad dresses three general areas of simulation which frequently arise in semicon ductor modeling where Monte Carlo methods playa significant role. In the first chapter the basic mathematical theory of the Boltzmann equation for particle transport is presented. The following chapters are devoted to the modeling of the transport processes and the associated Monte Carlo meth ods. Specific examples of industrial applications illustrate the effectiveness and importance of these methods. Two of these areas concern simulation of physical particles which may be assigned a time dependent position and velocity. This includes the molecules of a dilute gas used in such processing equipment as chemi cal vapor decomposition reactors and sputtering reactors. We also consider charged particles moving within a semiconductor lattice |
Beschreibung: | 1 Online-Ressource (240 p) |
ISBN: | 9783034890809 9783034898980 |
DOI: | 10.1007/978-3-0348-9080-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422289 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1995 |||| o||u| ||||||eng d | ||
020 | |a 9783034890809 |c Online |9 978-3-0348-9080-9 | ||
020 | |a 9783034898980 |c Print |9 978-3-0348-9898-0 | ||
024 | 7 | |a 10.1007/978-3-0348-9080-9 |2 doi | |
035 | |a (OCoLC)1184365891 | ||
035 | |a (DE-599)BVBBV042422289 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 518 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Kersch, Alfred |e Verfasser |4 aut | |
245 | 1 | 0 | |a Transport Simulation in Microelectronics |c by Alfred Kersch, William J. Morokoff |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1995 | |
300 | |a 1 Online-Ressource (240 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Numerical Simulation for Microelectronics |v 3 | |
500 | |a Computer simulation of semiconductor processing equipment and devices requires the use of a wide variety of numerical methods. Of these methods, the Monte Carlo approach is perhaps most fundamentally suited to mod eling physical events occurring on microscopic scales which are intricately connected to the particle structure of nature. Here physical phenomena can be simulated by following simulation particles (such as electrons, molecules, photons, etc. ) through a statistical sampling of scattering events. Monte Carlo is, however, generally looked on as a last resort due to the extremely slow convergence of these methods. It is of interest, then, to examine when in microelectronics it is necessary to use Monte Carlo methods, how such methods may be improved, and what are the alternatives. This book ad dresses three general areas of simulation which frequently arise in semicon ductor modeling where Monte Carlo methods playa significant role. In the first chapter the basic mathematical theory of the Boltzmann equation for particle transport is presented. The following chapters are devoted to the modeling of the transport processes and the associated Monte Carlo meth ods. Specific examples of industrial applications illustrate the effectiveness and importance of these methods. Two of these areas concern simulation of physical particles which may be assigned a time dependent position and velocity. This includes the molecules of a dilute gas used in such processing equipment as chemi cal vapor decomposition reactors and sputtering reactors. We also consider charged particles moving within a semiconductor lattice | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Computer science | |
650 | 4 | |a Numerical analysis | |
650 | 4 | |a Numerical Analysis | |
650 | 4 | |a Programming Techniques | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Halbleitertechnologie |0 (DE-588)4158814-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Transportprozess |0 (DE-588)4185932-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Halbleiterbauelement |0 (DE-588)4113826-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Monte-Carlo-Simulation |0 (DE-588)4240945-7 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Boltzmann-Gleichung |0 (DE-588)4146261-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Halbleiterbauelement |0 (DE-588)4113826-0 |D s |
689 | 0 | 1 | |a Transportprozess |0 (DE-588)4185932-7 |D s |
689 | 0 | 2 | |a Boltzmann-Gleichung |0 (DE-588)4146261-0 |D s |
689 | 0 | 3 | |a Monte-Carlo-Simulation |0 (DE-588)4240945-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Halbleitertechnologie |0 (DE-588)4158814-9 |D s |
689 | 1 | 1 | |a Transportprozess |0 (DE-588)4185932-7 |D s |
689 | 1 | 2 | |a Boltzmann-Gleichung |0 (DE-588)4146261-0 |D s |
689 | 1 | 3 | |a Monte-Carlo-Simulation |0 (DE-588)4240945-7 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
700 | 1 | |a Morokoff, William J. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-9080-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857706 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096507490304 |
---|---|
any_adam_object | |
author | Kersch, Alfred |
author_facet | Kersch, Alfred |
author_role | aut |
author_sort | Kersch, Alfred |
author_variant | a k ak |
building | Verbundindex |
bvnumber | BV042422289 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184365891 (DE-599)BVBBV042422289 |
dewey-full | 518 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518 |
dewey-search | 518 |
dewey-sort | 3518 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-9080-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>04147nmm a2200661zcb4500</leader><controlfield tag="001">BV042422289</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1995 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034890809</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-9080-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034898980</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9898-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-9080-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184365891</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422289</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Kersch, Alfred</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Transport Simulation in Microelectronics</subfield><subfield code="c">by Alfred Kersch, William J. Morokoff</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1995</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (240 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Numerical Simulation for Microelectronics</subfield><subfield code="v">3</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Computer simulation of semiconductor processing equipment and devices requires the use of a wide variety of numerical methods. Of these methods, the Monte Carlo approach is perhaps most fundamentally suited to mod eling physical events occurring on microscopic scales which are intricately connected to the particle structure of nature. Here physical phenomena can be simulated by following simulation particles (such as electrons, molecules, photons, etc. ) through a statistical sampling of scattering events. Monte Carlo is, however, generally looked on as a last resort due to the extremely slow convergence of these methods. It is of interest, then, to examine when in microelectronics it is necessary to use Monte Carlo methods, how such methods may be improved, and what are the alternatives. This book ad dresses three general areas of simulation which frequently arise in semicon ductor modeling where Monte Carlo methods playa significant role. In the first chapter the basic mathematical theory of the Boltzmann equation for particle transport is presented. The following chapters are devoted to the modeling of the transport processes and the associated Monte Carlo meth ods. Specific examples of industrial applications illustrate the effectiveness and importance of these methods. Two of these areas concern simulation of physical particles which may be assigned a time dependent position and velocity. This includes the molecules of a dilute gas used in such processing equipment as chemi cal vapor decomposition reactors and sputtering reactors. We also consider charged particles moving within a semiconductor lattice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Programming Techniques</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Halbleitertechnologie</subfield><subfield code="0">(DE-588)4158814-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Transportprozess</subfield><subfield code="0">(DE-588)4185932-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Halbleiterbauelement</subfield><subfield code="0">(DE-588)4113826-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Monte-Carlo-Simulation</subfield><subfield code="0">(DE-588)4240945-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Boltzmann-Gleichung</subfield><subfield code="0">(DE-588)4146261-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Halbleiterbauelement</subfield><subfield code="0">(DE-588)4113826-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Transportprozess</subfield><subfield code="0">(DE-588)4185932-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Boltzmann-Gleichung</subfield><subfield code="0">(DE-588)4146261-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Monte-Carlo-Simulation</subfield><subfield code="0">(DE-588)4240945-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Halbleitertechnologie</subfield><subfield code="0">(DE-588)4158814-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Transportprozess</subfield><subfield code="0">(DE-588)4185932-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Boltzmann-Gleichung</subfield><subfield code="0">(DE-588)4146261-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="3"><subfield code="a">Monte-Carlo-Simulation</subfield><subfield code="0">(DE-588)4240945-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Morokoff, William J.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-9080-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857706</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422289 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034890809 9783034898980 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857706 |
oclc_num | 1184365891 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (240 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1995 |
publishDateSearch | 1995 |
publishDateSort | 1995 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Progress in Numerical Simulation for Microelectronics |
spelling | Kersch, Alfred Verfasser aut Transport Simulation in Microelectronics by Alfred Kersch, William J. Morokoff Basel Birkhäuser Basel 1995 1 Online-Ressource (240 p) txt rdacontent c rdamedia cr rdacarrier Progress in Numerical Simulation for Microelectronics 3 Computer simulation of semiconductor processing equipment and devices requires the use of a wide variety of numerical methods. Of these methods, the Monte Carlo approach is perhaps most fundamentally suited to mod eling physical events occurring on microscopic scales which are intricately connected to the particle structure of nature. Here physical phenomena can be simulated by following simulation particles (such as electrons, molecules, photons, etc. ) through a statistical sampling of scattering events. Monte Carlo is, however, generally looked on as a last resort due to the extremely slow convergence of these methods. It is of interest, then, to examine when in microelectronics it is necessary to use Monte Carlo methods, how such methods may be improved, and what are the alternatives. This book ad dresses three general areas of simulation which frequently arise in semicon ductor modeling where Monte Carlo methods playa significant role. In the first chapter the basic mathematical theory of the Boltzmann equation for particle transport is presented. The following chapters are devoted to the modeling of the transport processes and the associated Monte Carlo meth ods. Specific examples of industrial applications illustrate the effectiveness and importance of these methods. Two of these areas concern simulation of physical particles which may be assigned a time dependent position and velocity. This includes the molecules of a dilute gas used in such processing equipment as chemi cal vapor decomposition reactors and sputtering reactors. We also consider charged particles moving within a semiconductor lattice Mathematics Computer science Numerical analysis Numerical Analysis Programming Techniques Informatik Mathematik Halbleitertechnologie (DE-588)4158814-9 gnd rswk-swf Transportprozess (DE-588)4185932-7 gnd rswk-swf Halbleiterbauelement (DE-588)4113826-0 gnd rswk-swf Monte-Carlo-Simulation (DE-588)4240945-7 gnd rswk-swf Boltzmann-Gleichung (DE-588)4146261-0 gnd rswk-swf Halbleiterbauelement (DE-588)4113826-0 s Transportprozess (DE-588)4185932-7 s Boltzmann-Gleichung (DE-588)4146261-0 s Monte-Carlo-Simulation (DE-588)4240945-7 s 1\p DE-604 Halbleitertechnologie (DE-588)4158814-9 s 2\p DE-604 Morokoff, William J. Sonstige oth https://doi.org/10.1007/978-3-0348-9080-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Kersch, Alfred Transport Simulation in Microelectronics Mathematics Computer science Numerical analysis Numerical Analysis Programming Techniques Informatik Mathematik Halbleitertechnologie (DE-588)4158814-9 gnd Transportprozess (DE-588)4185932-7 gnd Halbleiterbauelement (DE-588)4113826-0 gnd Monte-Carlo-Simulation (DE-588)4240945-7 gnd Boltzmann-Gleichung (DE-588)4146261-0 gnd |
subject_GND | (DE-588)4158814-9 (DE-588)4185932-7 (DE-588)4113826-0 (DE-588)4240945-7 (DE-588)4146261-0 |
title | Transport Simulation in Microelectronics |
title_auth | Transport Simulation in Microelectronics |
title_exact_search | Transport Simulation in Microelectronics |
title_full | Transport Simulation in Microelectronics by Alfred Kersch, William J. Morokoff |
title_fullStr | Transport Simulation in Microelectronics by Alfred Kersch, William J. Morokoff |
title_full_unstemmed | Transport Simulation in Microelectronics by Alfred Kersch, William J. Morokoff |
title_short | Transport Simulation in Microelectronics |
title_sort | transport simulation in microelectronics |
topic | Mathematics Computer science Numerical analysis Numerical Analysis Programming Techniques Informatik Mathematik Halbleitertechnologie (DE-588)4158814-9 gnd Transportprozess (DE-588)4185932-7 gnd Halbleiterbauelement (DE-588)4113826-0 gnd Monte-Carlo-Simulation (DE-588)4240945-7 gnd Boltzmann-Gleichung (DE-588)4146261-0 gnd |
topic_facet | Mathematics Computer science Numerical analysis Numerical Analysis Programming Techniques Informatik Mathematik Halbleitertechnologie Transportprozess Halbleiterbauelement Monte-Carlo-Simulation Boltzmann-Gleichung |
url | https://doi.org/10.1007/978-3-0348-9080-9 |
work_keys_str_mv | AT kerschalfred transportsimulationinmicroelectronics AT morokoffwilliamj transportsimulationinmicroelectronics |