Elliptic Functional Differential Equations and Applications:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
1997
|
Schriftenreihe: | Operator Theory Advances and Applications
91 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Boundary value problems for elliptic differential-difference equations have some astonishing properties. For example, unlike elliptic differential equations, the smoothness of the generalized solutions can be broken in a bounded domain and is preserved only in some subdomains. The symbol of a self-adjoint semibounded functional differential operator can change its sign. The purpose of this book is to present for the first time general results concerning solvability and spectrum of these problems, a priori estimates and smoothness of solutions. The approach is based on the properties of elliptic operators and difference operators in Sobolev spaces. The most important features distinguishing this work are applications to different fields of science. The methods in this book are used to obtain new results regarding the solvability of nonlocal elliptic boundary value problems and the existence of Feller semigroups for multidimensional diffusion processes. Moreover, applications to control theory and aircraft and rocket technology are given. The theory is illustrated with numerous figures and examples. The book is addresssed to graduate students and researchers in partial differential equations and functional differential equations. It will also be of use to engineers in control theory and elasticity theory |
Beschreibung: | 1 Online-Ressource (X, 294 p) |
ISBN: | 9783034890335 9783034898775 |
DOI: | 10.1007/978-3-0348-9033-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422281 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1997 |||| o||u| ||||||eng d | ||
020 | |a 9783034890335 |c Online |9 978-3-0348-9033-5 | ||
020 | |a 9783034898775 |c Print |9 978-3-0348-9877-5 | ||
024 | 7 | |a 10.1007/978-3-0348-9033-5 |2 doi | |
035 | |a (OCoLC)863762184 | ||
035 | |a (DE-599)BVBBV042422281 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Skubachevskii, Alexander L. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Elliptic Functional Differential Equations and Applications |c by Alexander L. Skubachevskii |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1997 | |
300 | |a 1 Online-Ressource (X, 294 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Operator Theory Advances and Applications |v 91 | |
500 | |a Boundary value problems for elliptic differential-difference equations have some astonishing properties. For example, unlike elliptic differential equations, the smoothness of the generalized solutions can be broken in a bounded domain and is preserved only in some subdomains. The symbol of a self-adjoint semibounded functional differential operator can change its sign. The purpose of this book is to present for the first time general results concerning solvability and spectrum of these problems, a priori estimates and smoothness of solutions. The approach is based on the properties of elliptic operators and difference operators in Sobolev spaces. The most important features distinguishing this work are applications to different fields of science. The methods in this book are used to obtain new results regarding the solvability of nonlocal elliptic boundary value problems and the existence of Feller semigroups for multidimensional diffusion processes. Moreover, applications to control theory and aircraft and rocket technology are given. The theory is illustrated with numerous figures and examples. The book is addresssed to graduate students and researchers in partial differential equations and functional differential equations. It will also be of use to engineers in control theory and elasticity theory | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Elliptische Funktion |0 (DE-588)4134665-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Funktional-Differentialgleichung |0 (DE-588)4155668-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Randwertproblem |0 (DE-588)4048395-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Sobolev-Raum |0 (DE-588)4055345-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Optimale Kontrolle |0 (DE-588)4121428-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Elliptische Differentialgleichung |0 (DE-588)4014485-9 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Funktional-Differentialgleichung |0 (DE-588)4155668-9 |D s |
689 | 0 | 1 | |a Elliptische Differentialgleichung |0 (DE-588)4014485-9 |D s |
689 | 0 | 2 | |a Randwertproblem |0 (DE-588)4048395-2 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Sobolev-Raum |0 (DE-588)4055345-0 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Elliptische Funktion |0 (DE-588)4134665-8 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
689 | 3 | 0 | |a Optimale Kontrolle |0 (DE-588)4121428-6 |D s |
689 | 3 | |8 4\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-9033-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857698 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 4\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096488615936 |
---|---|
any_adam_object | |
author | Skubachevskii, Alexander L. |
author_facet | Skubachevskii, Alexander L. |
author_role | aut |
author_sort | Skubachevskii, Alexander L. |
author_variant | a l s al als |
building | Verbundindex |
bvnumber | BV042422281 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863762184 (DE-599)BVBBV042422281 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-9033-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03865nmm a2200637zcb4500</leader><controlfield tag="001">BV042422281</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034890335</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-9033-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034898775</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9877-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-9033-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863762184</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422281</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Skubachevskii, Alexander L.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Elliptic Functional Differential Equations and Applications</subfield><subfield code="c">by Alexander L. Skubachevskii</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 294 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Operator Theory Advances and Applications</subfield><subfield code="v">91</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Boundary value problems for elliptic differential-difference equations have some astonishing properties. For example, unlike elliptic differential equations, the smoothness of the generalized solutions can be broken in a bounded domain and is preserved only in some subdomains. The symbol of a self-adjoint semibounded functional differential operator can change its sign. The purpose of this book is to present for the first time general results concerning solvability and spectrum of these problems, a priori estimates and smoothness of solutions. The approach is based on the properties of elliptic operators and difference operators in Sobolev spaces. The most important features distinguishing this work are applications to different fields of science. The methods in this book are used to obtain new results regarding the solvability of nonlocal elliptic boundary value problems and the existence of Feller semigroups for multidimensional diffusion processes. Moreover, applications to control theory and aircraft and rocket technology are given. The theory is illustrated with numerous figures and examples. The book is addresssed to graduate students and researchers in partial differential equations and functional differential equations. It will also be of use to engineers in control theory and elasticity theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptische Funktion</subfield><subfield code="0">(DE-588)4134665-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktional-Differentialgleichung</subfield><subfield code="0">(DE-588)4155668-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Sobolev-Raum</subfield><subfield code="0">(DE-588)4055345-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Optimale Kontrolle</subfield><subfield code="0">(DE-588)4121428-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4014485-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktional-Differentialgleichung</subfield><subfield code="0">(DE-588)4155668-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Elliptische Differentialgleichung</subfield><subfield code="0">(DE-588)4014485-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Randwertproblem</subfield><subfield code="0">(DE-588)4048395-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Sobolev-Raum</subfield><subfield code="0">(DE-588)4055345-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Elliptische Funktion</subfield><subfield code="0">(DE-588)4134665-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="3" ind2="0"><subfield code="a">Optimale Kontrolle</subfield><subfield code="0">(DE-588)4121428-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="3" ind2=" "><subfield code="8">4\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-9033-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857698</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">4\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422281 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034890335 9783034898775 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857698 |
oclc_num | 863762184 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 294 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Operator Theory Advances and Applications |
spelling | Skubachevskii, Alexander L. Verfasser aut Elliptic Functional Differential Equations and Applications by Alexander L. Skubachevskii Basel Birkhäuser Basel 1997 1 Online-Ressource (X, 294 p) txt rdacontent c rdamedia cr rdacarrier Operator Theory Advances and Applications 91 Boundary value problems for elliptic differential-difference equations have some astonishing properties. For example, unlike elliptic differential equations, the smoothness of the generalized solutions can be broken in a bounded domain and is preserved only in some subdomains. The symbol of a self-adjoint semibounded functional differential operator can change its sign. The purpose of this book is to present for the first time general results concerning solvability and spectrum of these problems, a priori estimates and smoothness of solutions. The approach is based on the properties of elliptic operators and difference operators in Sobolev spaces. The most important features distinguishing this work are applications to different fields of science. The methods in this book are used to obtain new results regarding the solvability of nonlocal elliptic boundary value problems and the existence of Feller semigroups for multidimensional diffusion processes. Moreover, applications to control theory and aircraft and rocket technology are given. The theory is illustrated with numerous figures and examples. The book is addresssed to graduate students and researchers in partial differential equations and functional differential equations. It will also be of use to engineers in control theory and elasticity theory Mathematics Mathematics, general Mathematik Elliptische Funktion (DE-588)4134665-8 gnd rswk-swf Funktional-Differentialgleichung (DE-588)4155668-9 gnd rswk-swf Randwertproblem (DE-588)4048395-2 gnd rswk-swf Sobolev-Raum (DE-588)4055345-0 gnd rswk-swf Optimale Kontrolle (DE-588)4121428-6 gnd rswk-swf Elliptische Differentialgleichung (DE-588)4014485-9 gnd rswk-swf Funktional-Differentialgleichung (DE-588)4155668-9 s Elliptische Differentialgleichung (DE-588)4014485-9 s Randwertproblem (DE-588)4048395-2 s 1\p DE-604 Sobolev-Raum (DE-588)4055345-0 s 2\p DE-604 Elliptische Funktion (DE-588)4134665-8 s 3\p DE-604 Optimale Kontrolle (DE-588)4121428-6 s 4\p DE-604 https://doi.org/10.1007/978-3-0348-9033-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 4\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Skubachevskii, Alexander L. Elliptic Functional Differential Equations and Applications Mathematics Mathematics, general Mathematik Elliptische Funktion (DE-588)4134665-8 gnd Funktional-Differentialgleichung (DE-588)4155668-9 gnd Randwertproblem (DE-588)4048395-2 gnd Sobolev-Raum (DE-588)4055345-0 gnd Optimale Kontrolle (DE-588)4121428-6 gnd Elliptische Differentialgleichung (DE-588)4014485-9 gnd |
subject_GND | (DE-588)4134665-8 (DE-588)4155668-9 (DE-588)4048395-2 (DE-588)4055345-0 (DE-588)4121428-6 (DE-588)4014485-9 |
title | Elliptic Functional Differential Equations and Applications |
title_auth | Elliptic Functional Differential Equations and Applications |
title_exact_search | Elliptic Functional Differential Equations and Applications |
title_full | Elliptic Functional Differential Equations and Applications by Alexander L. Skubachevskii |
title_fullStr | Elliptic Functional Differential Equations and Applications by Alexander L. Skubachevskii |
title_full_unstemmed | Elliptic Functional Differential Equations and Applications by Alexander L. Skubachevskii |
title_short | Elliptic Functional Differential Equations and Applications |
title_sort | elliptic functional differential equations and applications |
topic | Mathematics Mathematics, general Mathematik Elliptische Funktion (DE-588)4134665-8 gnd Funktional-Differentialgleichung (DE-588)4155668-9 gnd Randwertproblem (DE-588)4048395-2 gnd Sobolev-Raum (DE-588)4055345-0 gnd Optimale Kontrolle (DE-588)4121428-6 gnd Elliptische Differentialgleichung (DE-588)4014485-9 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Elliptische Funktion Funktional-Differentialgleichung Randwertproblem Sobolev-Raum Optimale Kontrolle Elliptische Differentialgleichung |
url | https://doi.org/10.1007/978-3-0348-9033-5 |
work_keys_str_mv | AT skubachevskiialexanderl ellipticfunctionaldifferentialequationsandapplications |