Non-vanishing of L-Functions and Applications:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
1997
|
Schriftenreihe: | Progress in Mathematics
157 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This monograph brings together a collection of results on the non-vanishing of L functions. The presentation, though based largely on the original papers, is suitable for independent study. A number of exercises have also been provided to aid in this endeavour. The exercises are of varying difficulty and those which require more effort have been marked with an asterisk. The authors would like to thank the Institut d'Estudis Catalans for their encouragement of this work through the Ferran Sunyer i Balaguer Prize. We would also like to thank the Institute for Advanced Study, Princeton for the excellent conditions which made this work possible, as well as NSERC, NSF and FCAR for funding. Princeton M. Ram Murty August, 1996 V. Kumar Murty Introduction Since the time of Dirichlet and Riemann, the analytic properties of L-functions have been used to establish theorems of a purely arithmetic nature. The distribution of prime numbers in arithmetic progressions is intimately connected with non-vanishing properties of various L-functions. With the subsequent advent of the Tauberian theory as developed by Wiener and Ikehara, these arithmetical theorems have been shown to be equivalent to the non-vanishing of these L-functions on the line Re(s) = 1. In the 1950's, a new theme was introduced by Birch and Swinnerton-Dyer |
Beschreibung: | 1 Online-Ressource (XI, 196 p) |
ISBN: | 9783034889568 9783764358013 |
ISSN: | 0743-1643 |
DOI: | 10.1007/978-3-0348-8956-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422269 | ||
003 | DE-604 | ||
005 | 20171219 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1997 |||| o||u| ||||||eng d | ||
020 | |a 9783034889568 |c Online |9 978-3-0348-8956-8 | ||
020 | |a 9783764358013 |c Print |9 978-3-7643-5801-3 | ||
024 | 7 | |a 10.1007/978-3-0348-8956-8 |2 doi | |
035 | |a (OCoLC)879624707 | ||
035 | |a (DE-599)BVBBV042422269 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.35 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Murty, M. Ram |e Verfasser |4 aut | |
245 | 1 | 0 | |a Non-vanishing of L-Functions and Applications |c by M. Ram Murty, V. Kumar Murty |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1997 | |
300 | |a 1 Online-Ressource (XI, 196 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Progress in Mathematics |v 157 |x 0743-1643 | |
500 | |a This monograph brings together a collection of results on the non-vanishing of L functions. The presentation, though based largely on the original papers, is suitable for independent study. A number of exercises have also been provided to aid in this endeavour. The exercises are of varying difficulty and those which require more effort have been marked with an asterisk. The authors would like to thank the Institut d'Estudis Catalans for their encouragement of this work through the Ferran Sunyer i Balaguer Prize. We would also like to thank the Institute for Advanced Study, Princeton for the excellent conditions which made this work possible, as well as NSERC, NSF and FCAR for funding. Princeton M. Ram Murty August, 1996 V. Kumar Murty Introduction Since the time of Dirichlet and Riemann, the analytic properties of L-functions have been used to establish theorems of a purely arithmetic nature. The distribution of prime numbers in arithmetic progressions is intimately connected with non-vanishing properties of various L-functions. With the subsequent advent of the Tauberian theory as developed by Wiener and Ikehara, these arithmetical theorems have been shown to be equivalent to the non-vanishing of these L-functions on the line Re(s) = 1. In the 1950's, a new theme was introduced by Birch and Swinnerton-Dyer | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry, algebraic | |
650 | 4 | |a Algebraic Geometry | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a L-Funktion |0 (DE-588)4137026-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a L-Funktion |0 (DE-588)4137026-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Murty, V. Kumar |e Sonstige |4 oth | |
830 | 0 | |a Progress in Mathematics |v 157 |w (DE-604)BV000004120 |9 157 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8956-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857686 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096456110080 |
---|---|
any_adam_object | |
author | Murty, M. Ram |
author_facet | Murty, M. Ram |
author_role | aut |
author_sort | Murty, M. Ram |
author_variant | m r m mr mrm |
building | Verbundindex |
bvnumber | BV042422269 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879624707 (DE-599)BVBBV042422269 |
dewey-full | 516.35 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.35 |
dewey-search | 516.35 |
dewey-sort | 3516.35 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8956-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02964nmm a2200481zcb4500</leader><controlfield tag="001">BV042422269</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20171219 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034889568</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8956-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764358013</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-7643-5801-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8956-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879624707</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422269</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.35</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Murty, M. Ram</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Non-vanishing of L-Functions and Applications</subfield><subfield code="c">by M. Ram Murty, V. Kumar Murty</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 196 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">157</subfield><subfield code="x">0743-1643</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This monograph brings together a collection of results on the non-vanishing of L functions. The presentation, though based largely on the original papers, is suitable for independent study. A number of exercises have also been provided to aid in this endeavour. The exercises are of varying difficulty and those which require more effort have been marked with an asterisk. The authors would like to thank the Institut d'Estudis Catalans for their encouragement of this work through the Ferran Sunyer i Balaguer Prize. We would also like to thank the Institute for Advanced Study, Princeton for the excellent conditions which made this work possible, as well as NSERC, NSF and FCAR for funding. Princeton M. Ram Murty August, 1996 V. Kumar Murty Introduction Since the time of Dirichlet and Riemann, the analytic properties of L-functions have been used to establish theorems of a purely arithmetic nature. The distribution of prime numbers in arithmetic progressions is intimately connected with non-vanishing properties of various L-functions. With the subsequent advent of the Tauberian theory as developed by Wiener and Ikehara, these arithmetical theorems have been shown to be equivalent to the non-vanishing of these L-functions on the line Re(s) = 1. In the 1950's, a new theme was introduced by Birch and Swinnerton-Dyer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry, algebraic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">L-Funktion</subfield><subfield code="0">(DE-588)4137026-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">L-Funktion</subfield><subfield code="0">(DE-588)4137026-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Murty, V. Kumar</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in Mathematics</subfield><subfield code="v">157</subfield><subfield code="w">(DE-604)BV000004120</subfield><subfield code="9">157</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8956-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857686</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422269 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034889568 9783764358013 |
issn | 0743-1643 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857686 |
oclc_num | 879624707 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XI, 196 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Birkhäuser Basel |
record_format | marc |
series | Progress in Mathematics |
series2 | Progress in Mathematics |
spelling | Murty, M. Ram Verfasser aut Non-vanishing of L-Functions and Applications by M. Ram Murty, V. Kumar Murty Basel Birkhäuser Basel 1997 1 Online-Ressource (XI, 196 p) txt rdacontent c rdamedia cr rdacarrier Progress in Mathematics 157 0743-1643 This monograph brings together a collection of results on the non-vanishing of L functions. The presentation, though based largely on the original papers, is suitable for independent study. A number of exercises have also been provided to aid in this endeavour. The exercises are of varying difficulty and those which require more effort have been marked with an asterisk. The authors would like to thank the Institut d'Estudis Catalans for their encouragement of this work through the Ferran Sunyer i Balaguer Prize. We would also like to thank the Institute for Advanced Study, Princeton for the excellent conditions which made this work possible, as well as NSERC, NSF and FCAR for funding. Princeton M. Ram Murty August, 1996 V. Kumar Murty Introduction Since the time of Dirichlet and Riemann, the analytic properties of L-functions have been used to establish theorems of a purely arithmetic nature. The distribution of prime numbers in arithmetic progressions is intimately connected with non-vanishing properties of various L-functions. With the subsequent advent of the Tauberian theory as developed by Wiener and Ikehara, these arithmetical theorems have been shown to be equivalent to the non-vanishing of these L-functions on the line Re(s) = 1. In the 1950's, a new theme was introduced by Birch and Swinnerton-Dyer Mathematics Geometry, algebraic Algebraic Geometry Mathematik L-Funktion (DE-588)4137026-0 gnd rswk-swf L-Funktion (DE-588)4137026-0 s 1\p DE-604 Murty, V. Kumar Sonstige oth Progress in Mathematics 157 (DE-604)BV000004120 157 https://doi.org/10.1007/978-3-0348-8956-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Murty, M. Ram Non-vanishing of L-Functions and Applications Progress in Mathematics Mathematics Geometry, algebraic Algebraic Geometry Mathematik L-Funktion (DE-588)4137026-0 gnd |
subject_GND | (DE-588)4137026-0 |
title | Non-vanishing of L-Functions and Applications |
title_auth | Non-vanishing of L-Functions and Applications |
title_exact_search | Non-vanishing of L-Functions and Applications |
title_full | Non-vanishing of L-Functions and Applications by M. Ram Murty, V. Kumar Murty |
title_fullStr | Non-vanishing of L-Functions and Applications by M. Ram Murty, V. Kumar Murty |
title_full_unstemmed | Non-vanishing of L-Functions and Applications by M. Ram Murty, V. Kumar Murty |
title_short | Non-vanishing of L-Functions and Applications |
title_sort | non vanishing of l functions and applications |
topic | Mathematics Geometry, algebraic Algebraic Geometry Mathematik L-Funktion (DE-588)4137026-0 gnd |
topic_facet | Mathematics Geometry, algebraic Algebraic Geometry Mathematik L-Funktion |
url | https://doi.org/10.1007/978-3-0348-8956-8 |
volume_link | (DE-604)BV000004120 |
work_keys_str_mv | AT murtymram nonvanishingoflfunctionsandapplications AT murtyvkumar nonvanishingoflfunctionsandapplications |