Gromov’s Compactness Theorem for Pseudo-holomorphic Curves:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Abschlussarbeit Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
1997
|
Schriftenreihe: | Progress in Mathematics
151 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Mikhail Gromov introduced pseudo-holomorphic curves into symplectic geometry in 1985. Since then, pseudo-holomorphic curves have taken on great importance in many fields. The aim of this book is to present the original proof of Gromov's compactness theorem for pseudo-holomorphic curves in detail. Local properties of pseudo-holomorphic curves are investigated and proved from a geometric viewpoint. Properties of particular interest are isoperimetric inequalities, a monotonicity formula, gradient bounds and the removal of singularities. A special chapter is devoted to relevant features of hyperbolic surfaces, where pairs of pants decomposition and thickthin decomposition are described. The book is essentially self-contained and should also be accessible to students with a basic knowledge of differentiable manifolds and covering spaces |
Beschreibung: | 1 Online-Ressource (VIII, 135 p) |
ISBN: | 9783034889520 9783034898423 |
DOI: | 10.1007/978-3-0348-8952-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422267 | ||
003 | DE-604 | ||
005 | 20240221 | ||
006 | a m||| 00||| | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1997 |||| o||u| ||||||eng d | ||
020 | |a 9783034889520 |c Online |9 978-3-0348-8952-0 | ||
020 | |a 9783034898423 |c Print |9 978-3-0348-9842-3 | ||
024 | 7 | |a 10.1007/978-3-0348-8952-0 |2 doi | |
035 | |a (OCoLC)1165442532 | ||
035 | |a (DE-599)BVBBV042422267 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Hummel, Christoph |e Verfasser |4 aut | |
245 | 1 | 0 | |a Gromov’s Compactness Theorem for Pseudo-holomorphic Curves |c by Christoph Hummel |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1997 | |
300 | |a 1 Online-Ressource (VIII, 135 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Mathematics |v 151 | |
500 | |a Mikhail Gromov introduced pseudo-holomorphic curves into symplectic geometry in 1985. Since then, pseudo-holomorphic curves have taken on great importance in many fields. The aim of this book is to present the original proof of Gromov's compactness theorem for pseudo-holomorphic curves in detail. Local properties of pseudo-holomorphic curves are investigated and proved from a geometric viewpoint. Properties of particular interest are isoperimetric inequalities, a monotonicity formula, gradient bounds and the removal of singularities. A special chapter is devoted to relevant features of hyperbolic surfaces, where pairs of pants decomposition and thickthin decomposition are described. The book is essentially self-contained and should also be accessible to students with a basic knowledge of differentiable manifolds and covering spaces | ||
502 | |b Diplomarbeit |c Universität Freiburg (Breisgau) |d 1992 | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Riemannscher Raum |0 (DE-588)4128295-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Pseudoholomorphe Funktion |0 (DE-588)4176138-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kompaktheit |0 (DE-588)4456100-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symplektische Mannigfaltigkeit |0 (DE-588)4290704-4 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4113937-9 |a Hochschulschrift |2 gnd-content | |
689 | 0 | 0 | |a Riemannscher Raum |0 (DE-588)4128295-4 |D s |
689 | 0 | 1 | |a Symplektische Mannigfaltigkeit |0 (DE-588)4290704-4 |D s |
689 | 0 | 2 | |a Pseudoholomorphe Funktion |0 (DE-588)4176138-8 |D s |
689 | 0 | 3 | |a Kompaktheit |0 (DE-588)4456100-3 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8952-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857684 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096451915776 |
---|---|
any_adam_object | |
author | Hummel, Christoph |
author_facet | Hummel, Christoph |
author_role | aut |
author_sort | Hummel, Christoph |
author_variant | c h ch |
building | Verbundindex |
bvnumber | BV042422267 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165442532 (DE-599)BVBBV042422267 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8952-0 |
format | Thesis Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02993nmm a2200565zcb4500</leader><controlfield tag="001">BV042422267</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20240221 </controlfield><controlfield tag="006">a m||| 00||| </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034889520</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8952-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034898423</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9842-3</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8952-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165442532</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422267</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hummel, Christoph</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Gromov’s Compactness Theorem for Pseudo-holomorphic Curves</subfield><subfield code="c">by Christoph Hummel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 135 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">151</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Mikhail Gromov introduced pseudo-holomorphic curves into symplectic geometry in 1985. Since then, pseudo-holomorphic curves have taken on great importance in many fields. The aim of this book is to present the original proof of Gromov's compactness theorem for pseudo-holomorphic curves in detail. Local properties of pseudo-holomorphic curves are investigated and proved from a geometric viewpoint. Properties of particular interest are isoperimetric inequalities, a monotonicity formula, gradient bounds and the removal of singularities. A special chapter is devoted to relevant features of hyperbolic surfaces, where pairs of pants decomposition and thickthin decomposition are described. The book is essentially self-contained and should also be accessible to students with a basic knowledge of differentiable manifolds and covering spaces</subfield></datafield><datafield tag="502" ind1=" " ind2=" "><subfield code="b">Diplomarbeit</subfield><subfield code="c">Universität Freiburg (Breisgau)</subfield><subfield code="d">1992</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannscher Raum</subfield><subfield code="0">(DE-588)4128295-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Pseudoholomorphe Funktion</subfield><subfield code="0">(DE-588)4176138-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kompaktheit</subfield><subfield code="0">(DE-588)4456100-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symplektische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4290704-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4113937-9</subfield><subfield code="a">Hochschulschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Riemannscher Raum</subfield><subfield code="0">(DE-588)4128295-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Symplektische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4290704-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Pseudoholomorphe Funktion</subfield><subfield code="0">(DE-588)4176138-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Kompaktheit</subfield><subfield code="0">(DE-588)4456100-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8952-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857684</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4113937-9 Hochschulschrift gnd-content |
genre_facet | Hochschulschrift |
id | DE-604.BV042422267 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034889520 9783034898423 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857684 |
oclc_num | 1165442532 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 135 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Progress in Mathematics |
spelling | Hummel, Christoph Verfasser aut Gromov’s Compactness Theorem for Pseudo-holomorphic Curves by Christoph Hummel Basel Birkhäuser Basel 1997 1 Online-Ressource (VIII, 135 p) txt rdacontent c rdamedia cr rdacarrier Progress in Mathematics 151 Mikhail Gromov introduced pseudo-holomorphic curves into symplectic geometry in 1985. Since then, pseudo-holomorphic curves have taken on great importance in many fields. The aim of this book is to present the original proof of Gromov's compactness theorem for pseudo-holomorphic curves in detail. Local properties of pseudo-holomorphic curves are investigated and proved from a geometric viewpoint. Properties of particular interest are isoperimetric inequalities, a monotonicity formula, gradient bounds and the removal of singularities. A special chapter is devoted to relevant features of hyperbolic surfaces, where pairs of pants decomposition and thickthin decomposition are described. The book is essentially self-contained and should also be accessible to students with a basic knowledge of differentiable manifolds and covering spaces Diplomarbeit Universität Freiburg (Breisgau) 1992 Mathematics Mathematics, general Mathematik Riemannscher Raum (DE-588)4128295-4 gnd rswk-swf Pseudoholomorphe Funktion (DE-588)4176138-8 gnd rswk-swf Kompaktheit (DE-588)4456100-3 gnd rswk-swf Symplektische Mannigfaltigkeit (DE-588)4290704-4 gnd rswk-swf 1\p (DE-588)4113937-9 Hochschulschrift gnd-content Riemannscher Raum (DE-588)4128295-4 s Symplektische Mannigfaltigkeit (DE-588)4290704-4 s Pseudoholomorphe Funktion (DE-588)4176138-8 s Kompaktheit (DE-588)4456100-3 s 2\p DE-604 https://doi.org/10.1007/978-3-0348-8952-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hummel, Christoph Gromov’s Compactness Theorem for Pseudo-holomorphic Curves Mathematics Mathematics, general Mathematik Riemannscher Raum (DE-588)4128295-4 gnd Pseudoholomorphe Funktion (DE-588)4176138-8 gnd Kompaktheit (DE-588)4456100-3 gnd Symplektische Mannigfaltigkeit (DE-588)4290704-4 gnd |
subject_GND | (DE-588)4128295-4 (DE-588)4176138-8 (DE-588)4456100-3 (DE-588)4290704-4 (DE-588)4113937-9 |
title | Gromov’s Compactness Theorem for Pseudo-holomorphic Curves |
title_auth | Gromov’s Compactness Theorem for Pseudo-holomorphic Curves |
title_exact_search | Gromov’s Compactness Theorem for Pseudo-holomorphic Curves |
title_full | Gromov’s Compactness Theorem for Pseudo-holomorphic Curves by Christoph Hummel |
title_fullStr | Gromov’s Compactness Theorem for Pseudo-holomorphic Curves by Christoph Hummel |
title_full_unstemmed | Gromov’s Compactness Theorem for Pseudo-holomorphic Curves by Christoph Hummel |
title_short | Gromov’s Compactness Theorem for Pseudo-holomorphic Curves |
title_sort | gromov s compactness theorem for pseudo holomorphic curves |
topic | Mathematics Mathematics, general Mathematik Riemannscher Raum (DE-588)4128295-4 gnd Pseudoholomorphe Funktion (DE-588)4176138-8 gnd Kompaktheit (DE-588)4456100-3 gnd Symplektische Mannigfaltigkeit (DE-588)4290704-4 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Riemannscher Raum Pseudoholomorphe Funktion Kompaktheit Symplektische Mannigfaltigkeit Hochschulschrift |
url | https://doi.org/10.1007/978-3-0348-8952-0 |
work_keys_str_mv | AT hummelchristoph gromovscompactnesstheoremforpseudoholomorphiccurves |