Geometry of Higher Dimensional Algebraic Varieties:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
1997
|
Schriftenreihe: | DMV Seminar
26 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book is based on lecture notes of a seminar of the Deutsche Mathematiker Vereinigung held by the authors at Oberwolfach from April 2 to 8, 1995. It gives an introduction to the classification theory and geometry of higher dimensional complex-algebraic varieties, focusing on the tremendeous developments of the subject in the last 20 years. The work is in two parts, with each one preceeded by an introduction describing its contents in detail. Here, it will suffice to simply explain how the subject matter has been divided. Cum grano salis one might say that Part 1 (Miyaoka) is more concerned with the algebraic methods and Part 2 (Peternell) with the more analytic aspects though they have unavoidable overlaps because there is no clearcut distinction between the two methods. Specifically, Part 1 treats the deformation theory, existence and geometry of rational curves via characteristic p, while Part 2 is principally concerned with vanishing theorems and their geometric applications. Part I Geometry of Rational Curves on Varieties Yoichi Miyaoka RIMS Kyoto University 606-01 Kyoto Japan Introduction: Why Rational Curves? This note is based on a series of lectures given at the Mathematisches Forschungsinstitut at Oberwolfach, Germany, as a part of the DMV seminar "Mori Theory". The construction of minimal models was discussed by T. |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9783034888936 9783764354909 |
DOI: | 10.1007/978-3-0348-8893-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422247 | ||
003 | DE-604 | ||
005 | 20170915 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1997 |||| o||u| ||||||eng d | ||
020 | |a 9783034888936 |c Online |9 978-3-0348-8893-6 | ||
020 | |a 9783764354909 |c Print |9 978-3-7643-5490-9 | ||
024 | 7 | |a 10.1007/978-3-0348-8893-6 |2 doi | |
035 | |a (OCoLC)863791529 | ||
035 | |a (DE-599)BVBBV042422247 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Miyaoka, Yoichi |e Verfasser |4 aut | |
245 | 1 | 0 | |a Geometry of Higher Dimensional Algebraic Varieties |c by Yoichi Miyaoka, Thomas Peternell |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1997 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a DMV Seminar |v 26 | |
500 | |a This book is based on lecture notes of a seminar of the Deutsche Mathematiker Vereinigung held by the authors at Oberwolfach from April 2 to 8, 1995. It gives an introduction to the classification theory and geometry of higher dimensional complex-algebraic varieties, focusing on the tremendeous developments of the subject in the last 20 years. The work is in two parts, with each one preceeded by an introduction describing its contents in detail. Here, it will suffice to simply explain how the subject matter has been divided. Cum grano salis one might say that Part 1 (Miyaoka) is more concerned with the algebraic methods and Part 2 (Peternell) with the more analytic aspects though they have unavoidable overlaps because there is no clearcut distinction between the two methods. Specifically, Part 1 treats the deformation theory, existence and geometry of rational curves via characteristic p, while Part 2 is principally concerned with vanishing theorems and their geometric applications. Part I Geometry of Rational Curves on Varieties Yoichi Miyaoka RIMS Kyoto University 606-01 Kyoto Japan Introduction: Why Rational Curves? This note is based on a series of lectures given at the Mathematisches Forschungsinstitut at Oberwolfach, Germany, as a part of the DMV seminar "Mori Theory". The construction of minimal models was discussed by T. | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Komplexe algebraische Mannigfaltigkeit |0 (DE-588)4285867-7 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |y 1995 |z Oberwolfach |2 gnd-content | |
689 | 0 | 0 | |a Komplexe algebraische Mannigfaltigkeit |0 (DE-588)4285867-7 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Peternell, Thomas |d 1954- |e Sonstige |0 (DE-588)133675394 |4 oth | |
830 | 0 | |a DMV Seminar |v 26 |w (DE-604)BV000020322 |9 26 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8893-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857664 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096434089984 |
---|---|
any_adam_object | |
author | Miyaoka, Yoichi |
author_GND | (DE-588)133675394 |
author_facet | Miyaoka, Yoichi |
author_role | aut |
author_sort | Miyaoka, Yoichi |
author_variant | y m ym |
building | Verbundindex |
bvnumber | BV042422247 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863791529 (DE-599)BVBBV042422247 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8893-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03168nmm a2200493zcb4500</leader><controlfield tag="001">BV042422247</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170915 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1997 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034888936</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8893-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764354909</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-7643-5490-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8893-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863791529</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422247</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Miyaoka, Yoichi</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Geometry of Higher Dimensional Algebraic Varieties</subfield><subfield code="c">by Yoichi Miyaoka, Thomas Peternell</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1997</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">DMV Seminar</subfield><subfield code="v">26</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is based on lecture notes of a seminar of the Deutsche Mathematiker Vereinigung held by the authors at Oberwolfach from April 2 to 8, 1995. It gives an introduction to the classification theory and geometry of higher dimensional complex-algebraic varieties, focusing on the tremendeous developments of the subject in the last 20 years. The work is in two parts, with each one preceeded by an introduction describing its contents in detail. Here, it will suffice to simply explain how the subject matter has been divided. Cum grano salis one might say that Part 1 (Miyaoka) is more concerned with the algebraic methods and Part 2 (Peternell) with the more analytic aspects though they have unavoidable overlaps because there is no clearcut distinction between the two methods. Specifically, Part 1 treats the deformation theory, existence and geometry of rational curves via characteristic p, while Part 2 is principally concerned with vanishing theorems and their geometric applications. Part I Geometry of Rational Curves on Varieties Yoichi Miyaoka RIMS Kyoto University 606-01 Kyoto Japan Introduction: Why Rational Curves? This note is based on a series of lectures given at the Mathematisches Forschungsinstitut at Oberwolfach, Germany, as a part of the DMV seminar "Mori Theory". The construction of minimal models was discussed by T.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Komplexe algebraische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4285867-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1995</subfield><subfield code="z">Oberwolfach</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Komplexe algebraische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4285867-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Peternell, Thomas</subfield><subfield code="d">1954-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)133675394</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">DMV Seminar</subfield><subfield code="v">26</subfield><subfield code="w">(DE-604)BV000020322</subfield><subfield code="9">26</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8893-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857664</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift 1995 Oberwolfach gnd-content |
genre_facet | Konferenzschrift 1995 Oberwolfach |
id | DE-604.BV042422247 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034888936 9783764354909 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857664 |
oclc_num | 863791529 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1997 |
publishDateSearch | 1997 |
publishDateSort | 1997 |
publisher | Birkhäuser Basel |
record_format | marc |
series | DMV Seminar |
series2 | DMV Seminar |
spelling | Miyaoka, Yoichi Verfasser aut Geometry of Higher Dimensional Algebraic Varieties by Yoichi Miyaoka, Thomas Peternell Basel Birkhäuser Basel 1997 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier DMV Seminar 26 This book is based on lecture notes of a seminar of the Deutsche Mathematiker Vereinigung held by the authors at Oberwolfach from April 2 to 8, 1995. It gives an introduction to the classification theory and geometry of higher dimensional complex-algebraic varieties, focusing on the tremendeous developments of the subject in the last 20 years. The work is in two parts, with each one preceeded by an introduction describing its contents in detail. Here, it will suffice to simply explain how the subject matter has been divided. Cum grano salis one might say that Part 1 (Miyaoka) is more concerned with the algebraic methods and Part 2 (Peternell) with the more analytic aspects though they have unavoidable overlaps because there is no clearcut distinction between the two methods. Specifically, Part 1 treats the deformation theory, existence and geometry of rational curves via characteristic p, while Part 2 is principally concerned with vanishing theorems and their geometric applications. Part I Geometry of Rational Curves on Varieties Yoichi Miyaoka RIMS Kyoto University 606-01 Kyoto Japan Introduction: Why Rational Curves? This note is based on a series of lectures given at the Mathematisches Forschungsinstitut at Oberwolfach, Germany, as a part of the DMV seminar "Mori Theory". The construction of minimal models was discussed by T. Mathematics Mathematics, general Mathematik Komplexe algebraische Mannigfaltigkeit (DE-588)4285867-7 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift 1995 Oberwolfach gnd-content Komplexe algebraische Mannigfaltigkeit (DE-588)4285867-7 s 2\p DE-604 Peternell, Thomas 1954- Sonstige (DE-588)133675394 oth DMV Seminar 26 (DE-604)BV000020322 26 https://doi.org/10.1007/978-3-0348-8893-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Miyaoka, Yoichi Geometry of Higher Dimensional Algebraic Varieties DMV Seminar Mathematics Mathematics, general Mathematik Komplexe algebraische Mannigfaltigkeit (DE-588)4285867-7 gnd |
subject_GND | (DE-588)4285867-7 (DE-588)1071861417 |
title | Geometry of Higher Dimensional Algebraic Varieties |
title_auth | Geometry of Higher Dimensional Algebraic Varieties |
title_exact_search | Geometry of Higher Dimensional Algebraic Varieties |
title_full | Geometry of Higher Dimensional Algebraic Varieties by Yoichi Miyaoka, Thomas Peternell |
title_fullStr | Geometry of Higher Dimensional Algebraic Varieties by Yoichi Miyaoka, Thomas Peternell |
title_full_unstemmed | Geometry of Higher Dimensional Algebraic Varieties by Yoichi Miyaoka, Thomas Peternell |
title_short | Geometry of Higher Dimensional Algebraic Varieties |
title_sort | geometry of higher dimensional algebraic varieties |
topic | Mathematics Mathematics, general Mathematik Komplexe algebraische Mannigfaltigkeit (DE-588)4285867-7 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Komplexe algebraische Mannigfaltigkeit Konferenzschrift 1995 Oberwolfach |
url | https://doi.org/10.1007/978-3-0348-8893-6 |
volume_link | (DE-604)BV000020322 |
work_keys_str_mv | AT miyaokayoichi geometryofhigherdimensionalalgebraicvarieties AT peternellthomas geometryofhigherdimensionalalgebraicvarieties |