High Dimensional Probability:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
1998
|
Schriftenreihe: | Progress in Probability
43 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | What is high dimensional probability? Under this broad name we collect topics with a common philosophy, where the idea of high dimension plays a key role, either in the problem or in the methods by which it is approached. Let us give a specific example that can be immediately understood, that of Gaussian processes. Roughly speaking, before 1970, the Gaussian processes that were studied were indexed by a subset of Euclidean space, mostly with dimension at most three. Assuming some regularity on the covariance, one tried to take advantage of the structure of the index set. Around 1970 it was understood, in particular by Dudley, Feldman, Gross, and Segal that a more abstract and intrinsic point of view was much more fruitful. The index set was no longer considered as a subset of Euclidean space, but simply as a metric space with the metric canonically induced by the process. This shift in perspective subsequently lead to a considerable clarification of many aspects of Gaussian process theory, and also to its applications in other settings |
Beschreibung: | 1 Online-Ressource (VIII, 335 p) |
ISBN: | 9783034888295 9783034897907 |
DOI: | 10.1007/978-3-0348-8829-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422242 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1998 |||| o||u| ||||||eng d | ||
020 | |a 9783034888295 |c Online |9 978-3-0348-8829-5 | ||
020 | |a 9783034897907 |c Print |9 978-3-0348-9790-7 | ||
024 | 7 | |a 10.1007/978-3-0348-8829-5 |2 doi | |
035 | |a (OCoLC)1165605660 | ||
035 | |a (DE-599)BVBBV042422242 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 519.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Eberlein, Ernst |e Verfasser |4 aut | |
245 | 1 | 0 | |a High Dimensional Probability |c edited by Ernst Eberlein, Marjorie Hahn, Michel Talagrand |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1998 | |
300 | |a 1 Online-Ressource (VIII, 335 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Probability |v 43 | |
500 | |a What is high dimensional probability? Under this broad name we collect topics with a common philosophy, where the idea of high dimension plays a key role, either in the problem or in the methods by which it is approached. Let us give a specific example that can be immediately understood, that of Gaussian processes. Roughly speaking, before 1970, the Gaussian processes that were studied were indexed by a subset of Euclidean space, mostly with dimension at most three. Assuming some regularity on the covariance, one tried to take advantage of the structure of the index set. Around 1970 it was understood, in particular by Dudley, Feldman, Gross, and Segal that a more abstract and intrinsic point of view was much more fruitful. The index set was no longer considered as a subset of Euclidean space, but simply as a metric space with the metric canonically induced by the process. This shift in perspective subsequently lead to a considerable clarification of many aspects of Gaussian process theory, and also to its applications in other settings | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Distribution (Probability theory) | |
650 | 4 | |a Probability Theory and Stochastic Processes | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Topologischer Vektorraum |0 (DE-588)4122383-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |2 gnd-content | |
689 | 0 | 0 | |a Wahrscheinlichkeitstheorie |0 (DE-588)4079013-7 |D s |
689 | 0 | 1 | |a Topologischer Vektorraum |0 (DE-588)4122383-4 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Hahn, Marjorie |e Sonstige |4 oth | |
700 | 1 | |a Talagrand, Michel |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8829-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857659 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096398438400 |
---|---|
any_adam_object | |
author | Eberlein, Ernst |
author_facet | Eberlein, Ernst |
author_role | aut |
author_sort | Eberlein, Ernst |
author_variant | e e ee |
building | Verbundindex |
bvnumber | BV042422242 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165605660 (DE-599)BVBBV042422242 |
dewey-full | 519.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 519 - Probabilities and applied mathematics |
dewey-raw | 519.2 |
dewey-search | 519.2 |
dewey-sort | 3519.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8829-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03029nmm a2200529zcb4500</leader><controlfield tag="001">BV042422242</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034888295</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8829-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034897907</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9790-7</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8829-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165605660</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422242</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">519.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Eberlein, Ernst</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">High Dimensional Probability</subfield><subfield code="c">edited by Ernst Eberlein, Marjorie Hahn, Michel Talagrand</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VIII, 335 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Probability</subfield><subfield code="v">43</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">What is high dimensional probability? Under this broad name we collect topics with a common philosophy, where the idea of high dimension plays a key role, either in the problem or in the methods by which it is approached. Let us give a specific example that can be immediately understood, that of Gaussian processes. Roughly speaking, before 1970, the Gaussian processes that were studied were indexed by a subset of Euclidean space, mostly with dimension at most three. Assuming some regularity on the covariance, one tried to take advantage of the structure of the index set. Around 1970 it was understood, in particular by Dudley, Feldman, Gross, and Segal that a more abstract and intrinsic point of view was much more fruitful. The index set was no longer considered as a subset of Euclidean space, but simply as a metric space with the metric canonically induced by the process. This shift in perspective subsequently lead to a considerable clarification of many aspects of Gaussian process theory, and also to its applications in other settings</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Distribution (Probability theory)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Probability Theory and Stochastic Processes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Topologischer Vektorraum</subfield><subfield code="0">(DE-588)4122383-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Wahrscheinlichkeitstheorie</subfield><subfield code="0">(DE-588)4079013-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Topologischer Vektorraum</subfield><subfield code="0">(DE-588)4122383-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hahn, Marjorie</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Talagrand, Michel</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8829-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857659</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift gnd-content |
genre_facet | Konferenzschrift |
id | DE-604.BV042422242 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034888295 9783034897907 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857659 |
oclc_num | 1165605660 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VIII, 335 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Progress in Probability |
spelling | Eberlein, Ernst Verfasser aut High Dimensional Probability edited by Ernst Eberlein, Marjorie Hahn, Michel Talagrand Basel Birkhäuser Basel 1998 1 Online-Ressource (VIII, 335 p) txt rdacontent c rdamedia cr rdacarrier Progress in Probability 43 What is high dimensional probability? Under this broad name we collect topics with a common philosophy, where the idea of high dimension plays a key role, either in the problem or in the methods by which it is approached. Let us give a specific example that can be immediately understood, that of Gaussian processes. Roughly speaking, before 1970, the Gaussian processes that were studied were indexed by a subset of Euclidean space, mostly with dimension at most three. Assuming some regularity on the covariance, one tried to take advantage of the structure of the index set. Around 1970 it was understood, in particular by Dudley, Feldman, Gross, and Segal that a more abstract and intrinsic point of view was much more fruitful. The index set was no longer considered as a subset of Euclidean space, but simply as a metric space with the metric canonically induced by the process. This shift in perspective subsequently lead to a considerable clarification of many aspects of Gaussian process theory, and also to its applications in other settings Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Topologischer Vektorraum (DE-588)4122383-4 gnd rswk-swf Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift gnd-content Wahrscheinlichkeitstheorie (DE-588)4079013-7 s Topologischer Vektorraum (DE-588)4122383-4 s 2\p DE-604 Hahn, Marjorie Sonstige oth Talagrand, Michel Sonstige oth https://doi.org/10.1007/978-3-0348-8829-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Eberlein, Ernst High Dimensional Probability Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Topologischer Vektorraum (DE-588)4122383-4 gnd Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd |
subject_GND | (DE-588)4122383-4 (DE-588)4079013-7 (DE-588)1071861417 |
title | High Dimensional Probability |
title_auth | High Dimensional Probability |
title_exact_search | High Dimensional Probability |
title_full | High Dimensional Probability edited by Ernst Eberlein, Marjorie Hahn, Michel Talagrand |
title_fullStr | High Dimensional Probability edited by Ernst Eberlein, Marjorie Hahn, Michel Talagrand |
title_full_unstemmed | High Dimensional Probability edited by Ernst Eberlein, Marjorie Hahn, Michel Talagrand |
title_short | High Dimensional Probability |
title_sort | high dimensional probability |
topic | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Topologischer Vektorraum (DE-588)4122383-4 gnd Wahrscheinlichkeitstheorie (DE-588)4079013-7 gnd |
topic_facet | Mathematics Distribution (Probability theory) Probability Theory and Stochastic Processes Mathematik Topologischer Vektorraum Wahrscheinlichkeitstheorie Konferenzschrift |
url | https://doi.org/10.1007/978-3-0348-8829-5 |
work_keys_str_mv | AT eberleinernst highdimensionalprobability AT hahnmarjorie highdimensionalprobability AT talagrandmichel highdimensionalprobability |