Chebyshev Splines and Kolmogorov Inequalities:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
1998
|
Schriftenreihe: | Operator Theory Advances and Applications
105 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Since the introduction of the functional classes HW (lI) and WT HW (lI) and their peri odic analogs Hw (1I') and ~ (1I'), defined by a concave majorant w of functions and their rth derivatives, many researchers have contributed to the area of ex tremal problems and approximation of these classes by algebraic or trigonometric polynomials, splines and other finite dimensional subspaces. In many extremal problems in the Sobolev class W~ (lI) and its periodic ana log W~ (1I') an exceptional role belongs to the polynomial perfect splines of degree r, i.e. the functions whose rth derivative takes on the values -1 and 1 on the neighbor ing intervals. For example, these functions turn out to be extremal in such problems of approximation theory as the best approximation of classes W~ (lI) and W~ (1I') by finite-dimensional subspaces and the problem of sharp Kolmogorov inequalities for intermediate derivatives of functions from W~. Therefore, no advance in the T exact and complete solution of problems in the nonperiodic classes W HW could be expected without finding analogs of polynomial perfect splines in WT HW |
Beschreibung: | 1 Online-Ressource (XIII, 210 p) |
ISBN: | 9783034888080 9783034897815 |
DOI: | 10.1007/978-3-0348-8808-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422237 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1998 |||| o||u| ||||||eng d | ||
020 | |a 9783034888080 |c Online |9 978-3-0348-8808-0 | ||
020 | |a 9783034897815 |c Print |9 978-3-0348-9781-5 | ||
024 | 7 | |a 10.1007/978-3-0348-8808-0 |2 doi | |
035 | |a (OCoLC)863776059 | ||
035 | |a (DE-599)BVBBV042422237 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Bagdasarov, Sergey K. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Chebyshev Splines and Kolmogorov Inequalities |c by Sergey K. Bagdasarov |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1998 | |
300 | |a 1 Online-Ressource (XIII, 210 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Operator Theory Advances and Applications |v 105 | |
500 | |a Since the introduction of the functional classes HW (lI) and WT HW (lI) and their peri odic analogs Hw (1I') and ~ (1I'), defined by a concave majorant w of functions and their rth derivatives, many researchers have contributed to the area of ex tremal problems and approximation of these classes by algebraic or trigonometric polynomials, splines and other finite dimensional subspaces. In many extremal problems in the Sobolev class W~ (lI) and its periodic ana log W~ (1I') an exceptional role belongs to the polynomial perfect splines of degree r, i.e. the functions whose rth derivative takes on the values -1 and 1 on the neighbor ing intervals. For example, these functions turn out to be extremal in such problems of approximation theory as the best approximation of classes W~ (lI) and W~ (1I') by finite-dimensional subspaces and the problem of sharp Kolmogorov inequalities for intermediate derivatives of functions from W~. Therefore, no advance in the T exact and complete solution of problems in the nonperiodic classes W HW could be expected without finding analogs of polynomial perfect splines in WT HW | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Approximation |0 (DE-588)4002498-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Extremwert |0 (DE-588)4137272-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Čebyšev-Spline |0 (DE-588)4528418-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Kolmogorov-Ungleichung |0 (DE-588)4528419-2 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Extremwert |0 (DE-588)4137272-4 |D s |
689 | 0 | 1 | |a Approximation |0 (DE-588)4002498-2 |D s |
689 | 0 | 2 | |a Kolmogorov-Ungleichung |0 (DE-588)4528419-2 |D s |
689 | 0 | 3 | |a Čebyšev-Spline |0 (DE-588)4528418-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8808-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857654 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096363835392 |
---|---|
any_adam_object | |
author | Bagdasarov, Sergey K. |
author_facet | Bagdasarov, Sergey K. |
author_role | aut |
author_sort | Bagdasarov, Sergey K. |
author_variant | s k b sk skb |
building | Verbundindex |
bvnumber | BV042422237 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863776059 (DE-599)BVBBV042422237 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8808-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02987nmm a2200517zcb4500</leader><controlfield tag="001">BV042422237</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034888080</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8808-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034897815</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9781-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8808-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863776059</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422237</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Bagdasarov, Sergey K.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Chebyshev Splines and Kolmogorov Inequalities</subfield><subfield code="c">by Sergey K. Bagdasarov</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 210 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Operator Theory Advances and Applications</subfield><subfield code="v">105</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Since the introduction of the functional classes HW (lI) and WT HW (lI) and their peri odic analogs Hw (1I') and ~ (1I'), defined by a concave majorant w of functions and their rth derivatives, many researchers have contributed to the area of ex tremal problems and approximation of these classes by algebraic or trigonometric polynomials, splines and other finite dimensional subspaces. In many extremal problems in the Sobolev class W~ (lI) and its periodic ana log W~ (1I') an exceptional role belongs to the polynomial perfect splines of degree r, i.e. the functions whose rth derivative takes on the values -1 and 1 on the neighbor ing intervals. For example, these functions turn out to be extremal in such problems of approximation theory as the best approximation of classes W~ (lI) and W~ (1I') by finite-dimensional subspaces and the problem of sharp Kolmogorov inequalities for intermediate derivatives of functions from W~. Therefore, no advance in the T exact and complete solution of problems in the nonperiodic classes W HW could be expected without finding analogs of polynomial perfect splines in WT HW</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Approximation</subfield><subfield code="0">(DE-588)4002498-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Extremwert</subfield><subfield code="0">(DE-588)4137272-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Čebyšev-Spline</subfield><subfield code="0">(DE-588)4528418-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kolmogorov-Ungleichung</subfield><subfield code="0">(DE-588)4528419-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Extremwert</subfield><subfield code="0">(DE-588)4137272-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Approximation</subfield><subfield code="0">(DE-588)4002498-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Kolmogorov-Ungleichung</subfield><subfield code="0">(DE-588)4528419-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="3"><subfield code="a">Čebyšev-Spline</subfield><subfield code="0">(DE-588)4528418-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8808-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857654</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422237 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034888080 9783034897815 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857654 |
oclc_num | 863776059 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIII, 210 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Operator Theory Advances and Applications |
spelling | Bagdasarov, Sergey K. Verfasser aut Chebyshev Splines and Kolmogorov Inequalities by Sergey K. Bagdasarov Basel Birkhäuser Basel 1998 1 Online-Ressource (XIII, 210 p) txt rdacontent c rdamedia cr rdacarrier Operator Theory Advances and Applications 105 Since the introduction of the functional classes HW (lI) and WT HW (lI) and their peri odic analogs Hw (1I') and ~ (1I'), defined by a concave majorant w of functions and their rth derivatives, many researchers have contributed to the area of ex tremal problems and approximation of these classes by algebraic or trigonometric polynomials, splines and other finite dimensional subspaces. In many extremal problems in the Sobolev class W~ (lI) and its periodic ana log W~ (1I') an exceptional role belongs to the polynomial perfect splines of degree r, i.e. the functions whose rth derivative takes on the values -1 and 1 on the neighbor ing intervals. For example, these functions turn out to be extremal in such problems of approximation theory as the best approximation of classes W~ (lI) and W~ (1I') by finite-dimensional subspaces and the problem of sharp Kolmogorov inequalities for intermediate derivatives of functions from W~. Therefore, no advance in the T exact and complete solution of problems in the nonperiodic classes W HW could be expected without finding analogs of polynomial perfect splines in WT HW Mathematics Mathematics, general Mathematik Approximation (DE-588)4002498-2 gnd rswk-swf Extremwert (DE-588)4137272-4 gnd rswk-swf Čebyšev-Spline (DE-588)4528418-0 gnd rswk-swf Kolmogorov-Ungleichung (DE-588)4528419-2 gnd rswk-swf Extremwert (DE-588)4137272-4 s Approximation (DE-588)4002498-2 s Kolmogorov-Ungleichung (DE-588)4528419-2 s Čebyšev-Spline (DE-588)4528418-0 s 1\p DE-604 https://doi.org/10.1007/978-3-0348-8808-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Bagdasarov, Sergey K. Chebyshev Splines and Kolmogorov Inequalities Mathematics Mathematics, general Mathematik Approximation (DE-588)4002498-2 gnd Extremwert (DE-588)4137272-4 gnd Čebyšev-Spline (DE-588)4528418-0 gnd Kolmogorov-Ungleichung (DE-588)4528419-2 gnd |
subject_GND | (DE-588)4002498-2 (DE-588)4137272-4 (DE-588)4528418-0 (DE-588)4528419-2 |
title | Chebyshev Splines and Kolmogorov Inequalities |
title_auth | Chebyshev Splines and Kolmogorov Inequalities |
title_exact_search | Chebyshev Splines and Kolmogorov Inequalities |
title_full | Chebyshev Splines and Kolmogorov Inequalities by Sergey K. Bagdasarov |
title_fullStr | Chebyshev Splines and Kolmogorov Inequalities by Sergey K. Bagdasarov |
title_full_unstemmed | Chebyshev Splines and Kolmogorov Inequalities by Sergey K. Bagdasarov |
title_short | Chebyshev Splines and Kolmogorov Inequalities |
title_sort | chebyshev splines and kolmogorov inequalities |
topic | Mathematics Mathematics, general Mathematik Approximation (DE-588)4002498-2 gnd Extremwert (DE-588)4137272-4 gnd Čebyšev-Spline (DE-588)4528418-0 gnd Kolmogorov-Ungleichung (DE-588)4528419-2 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Approximation Extremwert Čebyšev-Spline Kolmogorov-Ungleichung |
url | https://doi.org/10.1007/978-3-0348-8808-0 |
work_keys_str_mv | AT bagdasarovsergeyk chebyshevsplinesandkolmogorovinequalities |