Parabolic Boundary Value Problems:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
1998
|
Schriftenreihe: | Operator Theory Advances and Applications
101 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The present monograph is devoted to the theory of general parabolic boundary value problems. The vastness of this theory forced us to take difficult decisions in selecting the results to be presented and in determining the degree of detail needed to describe their proofs. In the first chapter we define the basic notions at the origin of the theory of parabolic boundary value problems and give various examples of illustrative and descriptive character. The main part of the monograph (Chapters II to V) is devoted to a the detailed and systematic exposition of the L -theory of parabolic 2 boundary value problems with smooth coefficients in Hilbert spaces of smooth functions and distributions of arbitrary finite order and with some natural appli cations of the theory. Wishing to make the monograph more informative, we included in Chapter VI a survey of results in the theory of the Cauchy problem and boundary value problems in the traditional spaces of smooth functions. We give no proofs; rather, we attempt to compare different results and techniques. Special attention is paid to a detailed analysis of examples illustrating and complementing the results for mulated. The chapter is written in such a way that the reader interested only in the results of the classical theory of the Cauchy problem and boundary value problems may concentrate on it alone, skipping the previous chapters |
Beschreibung: | 1 Online-Ressource (XI, 300 p) |
ISBN: | 9783034887670 9783034897655 |
DOI: | 10.1007/978-3-0348-8767-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422225 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1998 |||| o||u| ||||||eng d | ||
020 | |a 9783034887670 |c Online |9 978-3-0348-8767-0 | ||
020 | |a 9783034897655 |c Print |9 978-3-0348-9765-5 | ||
024 | 7 | |a 10.1007/978-3-0348-8767-0 |2 doi | |
035 | |a (OCoLC)869873121 | ||
035 | |a (DE-599)BVBBV042422225 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Eidelman, Samuil D. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Parabolic Boundary Value Problems |c by Samuil D. Eidelman, Nicolae V. Zhitarashu |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1998 | |
300 | |a 1 Online-Ressource (XI, 300 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Operator Theory Advances and Applications |v 101 | |
500 | |a The present monograph is devoted to the theory of general parabolic boundary value problems. The vastness of this theory forced us to take difficult decisions in selecting the results to be presented and in determining the degree of detail needed to describe their proofs. In the first chapter we define the basic notions at the origin of the theory of parabolic boundary value problems and give various examples of illustrative and descriptive character. The main part of the monograph (Chapters II to V) is devoted to a the detailed and systematic exposition of the L -theory of parabolic 2 boundary value problems with smooth coefficients in Hilbert spaces of smooth functions and distributions of arbitrary finite order and with some natural appli cations of the theory. Wishing to make the monograph more informative, we included in Chapter VI a survey of results in the theory of the Cauchy problem and boundary value problems in the traditional spaces of smooth functions. We give no proofs; rather, we attempt to compare different results and techniques. Special attention is paid to a detailed analysis of examples illustrating and complementing the results for mulated. The chapter is written in such a way that the reader interested only in the results of the classical theory of the Cauchy problem and boundary value problems may concentrate on it alone, skipping the previous chapters | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Parabolisches Randwertproblem |0 (DE-588)4319434-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Parabolisches Randwertproblem |0 (DE-588)4319434-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Zhitarashu, Nicolae V. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8767-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857642 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096347058176 |
---|---|
any_adam_object | |
author | Eidelman, Samuil D. |
author_facet | Eidelman, Samuil D. |
author_role | aut |
author_sort | Eidelman, Samuil D. |
author_variant | s d e sd sde |
building | Verbundindex |
bvnumber | BV042422225 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)869873121 (DE-599)BVBBV042422225 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8767-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02986nmm a2200457zcb4500</leader><controlfield tag="001">BV042422225</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1998 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034887670</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8767-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034897655</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9765-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8767-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869873121</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422225</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Eidelman, Samuil D.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Parabolic Boundary Value Problems</subfield><subfield code="c">by Samuil D. Eidelman, Nicolae V. Zhitarashu</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1998</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 300 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Operator Theory Advances and Applications</subfield><subfield code="v">101</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The present monograph is devoted to the theory of general parabolic boundary value problems. The vastness of this theory forced us to take difficult decisions in selecting the results to be presented and in determining the degree of detail needed to describe their proofs. In the first chapter we define the basic notions at the origin of the theory of parabolic boundary value problems and give various examples of illustrative and descriptive character. The main part of the monograph (Chapters II to V) is devoted to a the detailed and systematic exposition of the L -theory of parabolic 2 boundary value problems with smooth coefficients in Hilbert spaces of smooth functions and distributions of arbitrary finite order and with some natural appli cations of the theory. Wishing to make the monograph more informative, we included in Chapter VI a survey of results in the theory of the Cauchy problem and boundary value problems in the traditional spaces of smooth functions. We give no proofs; rather, we attempt to compare different results and techniques. Special attention is paid to a detailed analysis of examples illustrating and complementing the results for mulated. The chapter is written in such a way that the reader interested only in the results of the classical theory of the Cauchy problem and boundary value problems may concentrate on it alone, skipping the previous chapters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Parabolisches Randwertproblem</subfield><subfield code="0">(DE-588)4319434-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Parabolisches Randwertproblem</subfield><subfield code="0">(DE-588)4319434-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhitarashu, Nicolae V.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8767-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857642</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422225 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034887670 9783034897655 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857642 |
oclc_num | 869873121 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XI, 300 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1998 |
publishDateSearch | 1998 |
publishDateSort | 1998 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Operator Theory Advances and Applications |
spelling | Eidelman, Samuil D. Verfasser aut Parabolic Boundary Value Problems by Samuil D. Eidelman, Nicolae V. Zhitarashu Basel Birkhäuser Basel 1998 1 Online-Ressource (XI, 300 p) txt rdacontent c rdamedia cr rdacarrier Operator Theory Advances and Applications 101 The present monograph is devoted to the theory of general parabolic boundary value problems. The vastness of this theory forced us to take difficult decisions in selecting the results to be presented and in determining the degree of detail needed to describe their proofs. In the first chapter we define the basic notions at the origin of the theory of parabolic boundary value problems and give various examples of illustrative and descriptive character. The main part of the monograph (Chapters II to V) is devoted to a the detailed and systematic exposition of the L -theory of parabolic 2 boundary value problems with smooth coefficients in Hilbert spaces of smooth functions and distributions of arbitrary finite order and with some natural appli cations of the theory. Wishing to make the monograph more informative, we included in Chapter VI a survey of results in the theory of the Cauchy problem and boundary value problems in the traditional spaces of smooth functions. We give no proofs; rather, we attempt to compare different results and techniques. Special attention is paid to a detailed analysis of examples illustrating and complementing the results for mulated. The chapter is written in such a way that the reader interested only in the results of the classical theory of the Cauchy problem and boundary value problems may concentrate on it alone, skipping the previous chapters Mathematics Mathematics, general Mathematik Parabolisches Randwertproblem (DE-588)4319434-5 gnd rswk-swf Parabolisches Randwertproblem (DE-588)4319434-5 s 1\p DE-604 Zhitarashu, Nicolae V. Sonstige oth https://doi.org/10.1007/978-3-0348-8767-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Eidelman, Samuil D. Parabolic Boundary Value Problems Mathematics Mathematics, general Mathematik Parabolisches Randwertproblem (DE-588)4319434-5 gnd |
subject_GND | (DE-588)4319434-5 |
title | Parabolic Boundary Value Problems |
title_auth | Parabolic Boundary Value Problems |
title_exact_search | Parabolic Boundary Value Problems |
title_full | Parabolic Boundary Value Problems by Samuil D. Eidelman, Nicolae V. Zhitarashu |
title_fullStr | Parabolic Boundary Value Problems by Samuil D. Eidelman, Nicolae V. Zhitarashu |
title_full_unstemmed | Parabolic Boundary Value Problems by Samuil D. Eidelman, Nicolae V. Zhitarashu |
title_short | Parabolic Boundary Value Problems |
title_sort | parabolic boundary value problems |
topic | Mathematics Mathematics, general Mathematik Parabolisches Randwertproblem (DE-588)4319434-5 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Parabolisches Randwertproblem |
url | https://doi.org/10.1007/978-3-0348-8767-0 |
work_keys_str_mv | AT eidelmansamuild parabolicboundaryvalueproblems AT zhitarashunicolaev parabolicboundaryvalueproblems |