Numerical Methods for Conservation Laws:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
1992
|
Ausgabe: | Second Edition |
Schriftenreihe: | Lectures in Mathematics ETH Zürich, Department of Mathematics Research Institute of Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. Without the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are. not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy |
Beschreibung: | 1 Online-Ressource (214p) |
ISBN: | 9783034886291 9783764327231 |
DOI: | 10.1007/978-3-0348-8629-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422192 | ||
003 | DE-604 | ||
005 | 20170801 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1992 |||| o||u| ||||||eng d | ||
020 | |a 9783034886291 |c Online |9 978-3-0348-8629-1 | ||
020 | |a 9783764327231 |c Print |9 978-3-7643-2723-1 | ||
024 | 7 | |a 10.1007/978-3-0348-8629-1 |2 doi | |
035 | |a (OCoLC)863697791 | ||
035 | |a (DE-599)BVBBV042422192 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 518 |2 23 | |
084 | |a MAT 000 |2 stub | ||
084 | |a BAU 912f |2 stub | ||
084 | |a MAT 671f |2 stub | ||
100 | 1 | |a LeVeque, Randall J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Numerical Methods for Conservation Laws |c by Randall J. LeVeque |
250 | |a Second Edition | ||
264 | 1 | |a Basel |b Birkhäuser Basel |c 1992 | |
300 | |a 1 Online-Ressource (214p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lectures in Mathematics ETH Zürich, Department of Mathematics Research Institute of Mathematics | |
500 | |a These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. Without the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are. not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Computer science / Mathematics | |
650 | 4 | |a Computational Mathematics and Numerical Analysis | |
650 | 4 | |a Analysis | |
650 | 4 | |a Informatik | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Hyperbolische Differentialgleichung |0 (DE-588)4131213-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineares hyperbolisches System |0 (DE-588)4191896-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Erhaltungssatz |0 (DE-588)4131214-4 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerische Mathematik |0 (DE-588)4042805-9 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Erhaltungssatz |0 (DE-588)4131214-4 |D s |
689 | 0 | 1 | |a Nichtlineares hyperbolisches System |0 (DE-588)4191896-4 |D s |
689 | 0 | 2 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 0 | |5 DE-604 | |
689 | 1 | 0 | |a Erhaltungssatz |0 (DE-588)4131214-4 |D s |
689 | 1 | 1 | |a Hyperbolische Differentialgleichung |0 (DE-588)4131213-2 |D s |
689 | 1 | 2 | |a Numerisches Verfahren |0 (DE-588)4128130-5 |D s |
689 | 1 | |5 DE-604 | |
689 | 2 | 0 | |a Erhaltungssatz |0 (DE-588)4131214-4 |D s |
689 | 2 | 1 | |a Numerische Mathematik |0 (DE-588)4042805-9 |D s |
689 | 2 | |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8629-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857609 |
Datensatz im Suchindex
_version_ | 1804153096263172096 |
---|---|
any_adam_object | |
author | LeVeque, Randall J. |
author_facet | LeVeque, Randall J. |
author_role | aut |
author_sort | LeVeque, Randall J. |
author_variant | r j l rj rjl |
building | Verbundindex |
bvnumber | BV042422192 |
classification_tum | MAT 000 BAU 912f MAT 671f |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863697791 (DE-599)BVBBV042422192 |
dewey-full | 518 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 518 - Numerical analysis |
dewey-raw | 518 |
dewey-search | 518 |
dewey-sort | 3518 |
dewey-tens | 510 - Mathematics |
discipline | Bauingenieurwesen Mathematik Vermessungswesen |
doi_str_mv | 10.1007/978-3-0348-8629-1 |
edition | Second Edition |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03965nmm a2200673zc 4500</leader><controlfield tag="001">BV042422192</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170801 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1992 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034886291</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8629-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764327231</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-7643-2723-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8629-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863697791</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422192</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">518</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BAU 912f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 671f</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">LeVeque, Randall J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical Methods for Conservation Laws</subfield><subfield code="c">by Randall J. LeVeque</subfield></datafield><datafield tag="250" ind1=" " ind2=" "><subfield code="a">Second Edition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (214p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lectures in Mathematics ETH Zürich, Department of Mathematics Research Institute of Mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. Without the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are. not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computer science / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Computational Mathematics and Numerical Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Informatik</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineares hyperbolisches System</subfield><subfield code="0">(DE-588)4191896-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Erhaltungssatz</subfield><subfield code="0">(DE-588)4131214-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Erhaltungssatz</subfield><subfield code="0">(DE-588)4131214-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtlineares hyperbolisches System</subfield><subfield code="0">(DE-588)4191896-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Erhaltungssatz</subfield><subfield code="0">(DE-588)4131214-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="1"><subfield code="a">Hyperbolische Differentialgleichung</subfield><subfield code="0">(DE-588)4131213-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2="2"><subfield code="a">Numerisches Verfahren</subfield><subfield code="0">(DE-588)4128130-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Erhaltungssatz</subfield><subfield code="0">(DE-588)4131214-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2="1"><subfield code="a">Numerische Mathematik</subfield><subfield code="0">(DE-588)4042805-9</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8629-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857609</subfield></datafield></record></collection> |
id | DE-604.BV042422192 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034886291 9783764327231 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857609 |
oclc_num | 863697791 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (214p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Lectures in Mathematics ETH Zürich, Department of Mathematics Research Institute of Mathematics |
spelling | LeVeque, Randall J. Verfasser aut Numerical Methods for Conservation Laws by Randall J. LeVeque Second Edition Basel Birkhäuser Basel 1992 1 Online-Ressource (214p) txt rdacontent c rdamedia cr rdacarrier Lectures in Mathematics ETH Zürich, Department of Mathematics Research Institute of Mathematics These notes developed from a course on the numerical solution of conservation laws first taught at the University of Washington in the fall of 1988 and then at ETH during the following spring. The overall emphasis is on studying the mathematical tools that are essential in de veloping, analyzing, and successfully using numerical methods for nonlinear systems of conservation laws, particularly for problems involving shock waves. A reasonable un derstanding of the mathematical structure of these equations and their solutions is first required, and Part I of these notes deals with this theory. Part II deals more directly with numerical methods, again with the emphasis on general tools that are of broad use. I have stressed the underlying ideas used in various classes of methods rather than present ing the most sophisticated methods in great detail. My aim was to provide a sufficient background that students could then approach the current research literature with the necessary tools and understanding. Without the wonders of TeX and LaTeX, these notes would never have been put together. The professional-looking results perhaps obscure the fact that these are indeed lecture notes. Some sections have been reworked several times by now, but others are still preliminary. I can only hope that the errors are. not too blatant. Moreover, the breadth and depth of coverage was limited by the length of these courses, and some parts are rather sketchy Mathematics Global analysis (Mathematics) Computer science / Mathematics Computational Mathematics and Numerical Analysis Analysis Informatik Mathematik Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd rswk-swf Nichtlineares hyperbolisches System (DE-588)4191896-4 gnd rswk-swf Erhaltungssatz (DE-588)4131214-4 gnd rswk-swf Numerische Mathematik (DE-588)4042805-9 gnd rswk-swf Numerisches Verfahren (DE-588)4128130-5 gnd rswk-swf Erhaltungssatz (DE-588)4131214-4 s Nichtlineares hyperbolisches System (DE-588)4191896-4 s Numerisches Verfahren (DE-588)4128130-5 s DE-604 Hyperbolische Differentialgleichung (DE-588)4131213-2 s Numerische Mathematik (DE-588)4042805-9 s https://doi.org/10.1007/978-3-0348-8629-1 Verlag Volltext |
spellingShingle | LeVeque, Randall J. Numerical Methods for Conservation Laws Mathematics Global analysis (Mathematics) Computer science / Mathematics Computational Mathematics and Numerical Analysis Analysis Informatik Mathematik Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd Nichtlineares hyperbolisches System (DE-588)4191896-4 gnd Erhaltungssatz (DE-588)4131214-4 gnd Numerische Mathematik (DE-588)4042805-9 gnd Numerisches Verfahren (DE-588)4128130-5 gnd |
subject_GND | (DE-588)4131213-2 (DE-588)4191896-4 (DE-588)4131214-4 (DE-588)4042805-9 (DE-588)4128130-5 |
title | Numerical Methods for Conservation Laws |
title_auth | Numerical Methods for Conservation Laws |
title_exact_search | Numerical Methods for Conservation Laws |
title_full | Numerical Methods for Conservation Laws by Randall J. LeVeque |
title_fullStr | Numerical Methods for Conservation Laws by Randall J. LeVeque |
title_full_unstemmed | Numerical Methods for Conservation Laws by Randall J. LeVeque |
title_short | Numerical Methods for Conservation Laws |
title_sort | numerical methods for conservation laws |
topic | Mathematics Global analysis (Mathematics) Computer science / Mathematics Computational Mathematics and Numerical Analysis Analysis Informatik Mathematik Hyperbolische Differentialgleichung (DE-588)4131213-2 gnd Nichtlineares hyperbolisches System (DE-588)4191896-4 gnd Erhaltungssatz (DE-588)4131214-4 gnd Numerische Mathematik (DE-588)4042805-9 gnd Numerisches Verfahren (DE-588)4128130-5 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Computer science / Mathematics Computational Mathematics and Numerical Analysis Analysis Informatik Mathematik Hyperbolische Differentialgleichung Nichtlineares hyperbolisches System Erhaltungssatz Numerische Mathematik Numerisches Verfahren |
url | https://doi.org/10.1007/978-3-0348-8629-1 |
work_keys_str_mv | AT levequerandallj numericalmethodsforconservationlaws |