Numerical Methods in Approximation Theory, Vol. 9:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
1992
|
Schriftenreihe: | ISNM 105: International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale d'Analyse Numérique
105 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book is the official proceedings of a conference on Numerical Methods in Approximation Theory which was held at the Mathematisches Forschungs institut in Oberwolfach during the week of November 24~30, 1991. It contains refereed and edited papers by 20 of the 49 participants. The book is dedicated to the memory of Prof. Lothar Collatz who main tained a long and active interest in numerical approximation. It is the ninth in a series of volumes published by Birkhiiuser resulting from conferences on the subject held at Oberwolfach, and co-organized by Prof. Collatz. We now briefly describe the contents of the book. The paper of BASZEN SKI, DELVOS and JESTER deals with blending using sine double series expan sions of functions defined on the unit square. In addition to giving explicit error estimates for partial sums and for interpolating sine polynomials, they also show that Boolean sums yield almost the same asymptotic error estimates as the conventional tensor-product approach, but with a reduced number of terms. The paper of BEATSON and LIGHT discusses approximation by quasi interpolants which are sums of scaled translates of a one-parameter family of functions. They do not require reproduction of low degree polynomials, but nevertheless are able to give error bounds and analyze quasi-interpolation based on Gaussians and exponentials. BINEV and JETTER deal with multivariate interpolation using shifts of a single basis function. They treat both gridded data and scattered data. As examples, they consider box splines and certain radial basis functions |
Beschreibung: | 1 Online-Ressource (XIV, 359 p) |
ISBN: | 9783034886192 9783034897020 |
DOI: | 10.1007/978-3-0348-8619-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422187 | ||
003 | DE-604 | ||
005 | 20220801 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1992 |||| o||u| ||||||eng d | ||
020 | |a 9783034886192 |c Online |9 978-3-0348-8619-2 | ||
020 | |a 9783034897020 |c Print |9 978-3-0348-9702-0 | ||
024 | 7 | |a 10.1007/978-3-0348-8619-2 |2 doi | |
035 | |a (OCoLC)863757440 | ||
035 | |a (DE-599)BVBBV042422187 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 50 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Braess, Dietrich |d 1938- |e Verfasser |0 (DE-588)106060325 |4 aut | |
245 | 1 | 0 | |a Numerical Methods in Approximation Theory, Vol. 9 |c edited by Dietrich Braess, Larry L. Schumaker |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1992 | |
300 | |a 1 Online-Ressource (XIV, 359 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a ISNM 105: International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale d'Analyse Numérique |v 105 | |
500 | |a This book is the official proceedings of a conference on Numerical Methods in Approximation Theory which was held at the Mathematisches Forschungs institut in Oberwolfach during the week of November 24~30, 1991. It contains refereed and edited papers by 20 of the 49 participants. The book is dedicated to the memory of Prof. Lothar Collatz who main tained a long and active interest in numerical approximation. It is the ninth in a series of volumes published by Birkhiiuser resulting from conferences on the subject held at Oberwolfach, and co-organized by Prof. Collatz. We now briefly describe the contents of the book. The paper of BASZEN SKI, DELVOS and JESTER deals with blending using sine double series expan sions of functions defined on the unit square. In addition to giving explicit error estimates for partial sums and for interpolating sine polynomials, they also show that Boolean sums yield almost the same asymptotic error estimates as the conventional tensor-product approach, but with a reduced number of terms. The paper of BEATSON and LIGHT discusses approximation by quasi interpolants which are sums of scaled translates of a one-parameter family of functions. They do not require reproduction of low degree polynomials, but nevertheless are able to give error bounds and analyze quasi-interpolation based on Gaussians and exponentials. BINEV and JETTER deal with multivariate interpolation using shifts of a single basis function. They treat both gridded data and scattered data. As examples, they consider box splines and certain radial basis functions | ||
650 | 4 | |a Science (General) | |
650 | 4 | |a Science, general | |
650 | 4 | |a Naturwissenschaft | |
700 | 1 | |a Schumaker, Paul |e Sonstige |0 (DE-588)172365902 |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8619-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857604 |
Datensatz im Suchindex
_version_ | 1804153096257929216 |
---|---|
any_adam_object | |
author | Braess, Dietrich 1938- |
author_GND | (DE-588)106060325 (DE-588)172365902 |
author_facet | Braess, Dietrich 1938- |
author_role | aut |
author_sort | Braess, Dietrich 1938- |
author_variant | d b db |
building | Verbundindex |
bvnumber | BV042422187 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863757440 (DE-599)BVBBV042422187 |
dewey-full | 50 |
dewey-hundreds | 000 - Computer science, information, general works |
dewey-ones | 050 - General serial publications |
dewey-raw | 50 |
dewey-search | 50 |
dewey-sort | 250 |
dewey-tens | 050 - General serial publications |
discipline | Allgemeine Naturwissenschaft Mathematik |
doi_str_mv | 10.1007/978-3-0348-8619-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03090nmm a2200409zcb4500</leader><controlfield tag="001">BV042422187</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20220801 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1992 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034886192</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8619-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034897020</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9702-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8619-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863757440</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422187</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">50</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Braess, Dietrich</subfield><subfield code="d">1938-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)106060325</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Numerical Methods in Approximation Theory, Vol. 9</subfield><subfield code="c">edited by Dietrich Braess, Larry L. Schumaker</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIV, 359 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">ISNM 105: International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale d'Analyse Numérique</subfield><subfield code="v">105</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book is the official proceedings of a conference on Numerical Methods in Approximation Theory which was held at the Mathematisches Forschungs institut in Oberwolfach during the week of November 24~30, 1991. It contains refereed and edited papers by 20 of the 49 participants. The book is dedicated to the memory of Prof. Lothar Collatz who main tained a long and active interest in numerical approximation. It is the ninth in a series of volumes published by Birkhiiuser resulting from conferences on the subject held at Oberwolfach, and co-organized by Prof. Collatz. We now briefly describe the contents of the book. The paper of BASZEN SKI, DELVOS and JESTER deals with blending using sine double series expan sions of functions defined on the unit square. In addition to giving explicit error estimates for partial sums and for interpolating sine polynomials, they also show that Boolean sums yield almost the same asymptotic error estimates as the conventional tensor-product approach, but with a reduced number of terms. The paper of BEATSON and LIGHT discusses approximation by quasi interpolants which are sums of scaled translates of a one-parameter family of functions. They do not require reproduction of low degree polynomials, but nevertheless are able to give error bounds and analyze quasi-interpolation based on Gaussians and exponentials. BINEV and JETTER deal with multivariate interpolation using shifts of a single basis function. They treat both gridded data and scattered data. As examples, they consider box splines and certain radial basis functions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science (General)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Science, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Naturwissenschaft</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schumaker, Paul</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)172365902</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8619-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857604</subfield></datafield></record></collection> |
id | DE-604.BV042422187 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034886192 9783034897020 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857604 |
oclc_num | 863757440 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIV, 359 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | ISNM 105: International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale d'Analyse Numérique |
spelling | Braess, Dietrich 1938- Verfasser (DE-588)106060325 aut Numerical Methods in Approximation Theory, Vol. 9 edited by Dietrich Braess, Larry L. Schumaker Basel Birkhäuser Basel 1992 1 Online-Ressource (XIV, 359 p) txt rdacontent c rdamedia cr rdacarrier ISNM 105: International Series of Numerical Mathematics / Internationale Schriftenreihe zur Numerischen Mathematik / Série Internationale d'Analyse Numérique 105 This book is the official proceedings of a conference on Numerical Methods in Approximation Theory which was held at the Mathematisches Forschungs institut in Oberwolfach during the week of November 24~30, 1991. It contains refereed and edited papers by 20 of the 49 participants. The book is dedicated to the memory of Prof. Lothar Collatz who main tained a long and active interest in numerical approximation. It is the ninth in a series of volumes published by Birkhiiuser resulting from conferences on the subject held at Oberwolfach, and co-organized by Prof. Collatz. We now briefly describe the contents of the book. The paper of BASZEN SKI, DELVOS and JESTER deals with blending using sine double series expan sions of functions defined on the unit square. In addition to giving explicit error estimates for partial sums and for interpolating sine polynomials, they also show that Boolean sums yield almost the same asymptotic error estimates as the conventional tensor-product approach, but with a reduced number of terms. The paper of BEATSON and LIGHT discusses approximation by quasi interpolants which are sums of scaled translates of a one-parameter family of functions. They do not require reproduction of low degree polynomials, but nevertheless are able to give error bounds and analyze quasi-interpolation based on Gaussians and exponentials. BINEV and JETTER deal with multivariate interpolation using shifts of a single basis function. They treat both gridded data and scattered data. As examples, they consider box splines and certain radial basis functions Science (General) Science, general Naturwissenschaft Schumaker, Paul Sonstige (DE-588)172365902 oth https://doi.org/10.1007/978-3-0348-8619-2 Verlag Volltext |
spellingShingle | Braess, Dietrich 1938- Numerical Methods in Approximation Theory, Vol. 9 Science (General) Science, general Naturwissenschaft |
title | Numerical Methods in Approximation Theory, Vol. 9 |
title_auth | Numerical Methods in Approximation Theory, Vol. 9 |
title_exact_search | Numerical Methods in Approximation Theory, Vol. 9 |
title_full | Numerical Methods in Approximation Theory, Vol. 9 edited by Dietrich Braess, Larry L. Schumaker |
title_fullStr | Numerical Methods in Approximation Theory, Vol. 9 edited by Dietrich Braess, Larry L. Schumaker |
title_full_unstemmed | Numerical Methods in Approximation Theory, Vol. 9 edited by Dietrich Braess, Larry L. Schumaker |
title_short | Numerical Methods in Approximation Theory, Vol. 9 |
title_sort | numerical methods in approximation theory vol 9 |
topic | Science (General) Science, general Naturwissenschaft |
topic_facet | Science (General) Science, general Naturwissenschaft |
url | https://doi.org/10.1007/978-3-0348-8619-2 |
work_keys_str_mv | AT braessdietrich numericalmethodsinapproximationtheoryvol9 AT schumakerpaul numericalmethodsinapproximationtheoryvol9 |