Compact Riemann Surfaces:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
1992
|
Schriftenreihe: | Lectures in Mathematics ETH Zürich, Department of Mathematics Research Institute of Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | These notes form the contents of a Nachdiplomvorlesung given at the Forschungs institut fur Mathematik of the Eidgenossische Technische Hochschule, Zurich from November, 1984 to February, 1985. Prof. K. Chandrasekharan and Prof. Jurgen Moser have encouraged me to write them up for inclusion in the series, published by Birkhiiuser, of notes of these courses at the ETH. Dr. Albert Stadler produced detailed notes of the first part of this course, and very intelligible class-room notes of the rest. Without this work of Dr. Stadler, these notes would not have been written. While I have changed some things (such as the proof of the Serre duality theorem, here done entirely in the spirit of Serre's original paper), the present notes follow Dr. Stadler's fairly closely. My original aim in giving the course was twofold. I wanted to present the basic theorems about the Jacobian from Riemann's own point of view. Given the Riemann-Roch theorem, if Riemann's methods are expressed in modern language, they differ very little (if at all) from the work of modern authors |
Beschreibung: | 1 Online-Ressource |
ISBN: | 9783034886178 9783764327422 |
DOI: | 10.1007/978-3-0348-8617-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422186 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1992 |||| o||u| ||||||eng d | ||
020 | |a 9783034886178 |c Online |9 978-3-0348-8617-8 | ||
020 | |a 9783764327422 |c Print |9 978-3-7643-2742-2 | ||
024 | 7 | |a 10.1007/978-3-0348-8617-8 |2 doi | |
035 | |a (OCoLC)869853738 | ||
035 | |a (DE-599)BVBBV042422186 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Narasimhan, Raghavan |e Verfasser |4 aut | |
245 | 1 | 0 | |a Compact Riemann Surfaces |c by Raghavan Narasimhan |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1992 | |
300 | |a 1 Online-Ressource | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lectures in Mathematics ETH Zürich, Department of Mathematics Research Institute of Mathematics | |
500 | |a These notes form the contents of a Nachdiplomvorlesung given at the Forschungs institut fur Mathematik of the Eidgenossische Technische Hochschule, Zurich from November, 1984 to February, 1985. Prof. K. Chandrasekharan and Prof. Jurgen Moser have encouraged me to write them up for inclusion in the series, published by Birkhiiuser, of notes of these courses at the ETH. Dr. Albert Stadler produced detailed notes of the first part of this course, and very intelligible class-room notes of the rest. Without this work of Dr. Stadler, these notes would not have been written. While I have changed some things (such as the proof of the Serre duality theorem, here done entirely in the spirit of Serre's original paper), the present notes follow Dr. Stadler's fairly closely. My original aim in giving the course was twofold. I wanted to present the basic theorems about the Jacobian from Riemann's own point of view. Given the Riemann-Roch theorem, if Riemann's methods are expressed in modern language, they differ very little (if at all) from the work of modern authors | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Kompakte Riemannsche Fläche |0 (DE-588)4164852-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Riemannsche Fläche |0 (DE-588)4049991-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Kompakte Riemannsche Fläche |0 (DE-588)4164852-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Riemannsche Fläche |0 (DE-588)4049991-1 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8617-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857603 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096253734912 |
---|---|
any_adam_object | |
author | Narasimhan, Raghavan |
author_facet | Narasimhan, Raghavan |
author_role | aut |
author_sort | Narasimhan, Raghavan |
author_variant | r n rn |
building | Verbundindex |
bvnumber | BV042422186 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)869853738 (DE-599)BVBBV042422186 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8617-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02850nmm a2200493zc 4500</leader><controlfield tag="001">BV042422186</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1992 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034886178</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8617-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764327422</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-7643-2742-2</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8617-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)869853738</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422186</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Narasimhan, Raghavan</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Compact Riemann Surfaces</subfield><subfield code="c">by Raghavan Narasimhan</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lectures in Mathematics ETH Zürich, Department of Mathematics Research Institute of Mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">These notes form the contents of a Nachdiplomvorlesung given at the Forschungs institut fur Mathematik of the Eidgenossische Technische Hochschule, Zurich from November, 1984 to February, 1985. Prof. K. Chandrasekharan and Prof. Jurgen Moser have encouraged me to write them up for inclusion in the series, published by Birkhiiuser, of notes of these courses at the ETH. Dr. Albert Stadler produced detailed notes of the first part of this course, and very intelligible class-room notes of the rest. Without this work of Dr. Stadler, these notes would not have been written. While I have changed some things (such as the proof of the Serre duality theorem, here done entirely in the spirit of Serre's original paper), the present notes follow Dr. Stadler's fairly closely. My original aim in giving the course was twofold. I wanted to present the basic theorems about the Jacobian from Riemann's own point of view. Given the Riemann-Roch theorem, if Riemann's methods are expressed in modern language, they differ very little (if at all) from the work of modern authors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Kompakte Riemannsche Fläche</subfield><subfield code="0">(DE-588)4164852-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsche Fläche</subfield><subfield code="0">(DE-588)4049991-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Kompakte Riemannsche Fläche</subfield><subfield code="0">(DE-588)4164852-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Riemannsche Fläche</subfield><subfield code="0">(DE-588)4049991-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8617-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857603</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422186 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034886178 9783764327422 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857603 |
oclc_num | 869853738 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Lectures in Mathematics ETH Zürich, Department of Mathematics Research Institute of Mathematics |
spelling | Narasimhan, Raghavan Verfasser aut Compact Riemann Surfaces by Raghavan Narasimhan Basel Birkhäuser Basel 1992 1 Online-Ressource txt rdacontent c rdamedia cr rdacarrier Lectures in Mathematics ETH Zürich, Department of Mathematics Research Institute of Mathematics These notes form the contents of a Nachdiplomvorlesung given at the Forschungs institut fur Mathematik of the Eidgenossische Technische Hochschule, Zurich from November, 1984 to February, 1985. Prof. K. Chandrasekharan and Prof. Jurgen Moser have encouraged me to write them up for inclusion in the series, published by Birkhiiuser, of notes of these courses at the ETH. Dr. Albert Stadler produced detailed notes of the first part of this course, and very intelligible class-room notes of the rest. Without this work of Dr. Stadler, these notes would not have been written. While I have changed some things (such as the proof of the Serre duality theorem, here done entirely in the spirit of Serre's original paper), the present notes follow Dr. Stadler's fairly closely. My original aim in giving the course was twofold. I wanted to present the basic theorems about the Jacobian from Riemann's own point of view. Given the Riemann-Roch theorem, if Riemann's methods are expressed in modern language, they differ very little (if at all) from the work of modern authors Mathematics Mathematics, general Mathematik Kompakte Riemannsche Fläche (DE-588)4164852-3 gnd rswk-swf Riemannsche Fläche (DE-588)4049991-1 gnd rswk-swf Kompakte Riemannsche Fläche (DE-588)4164852-3 s 1\p DE-604 Riemannsche Fläche (DE-588)4049991-1 s 2\p DE-604 https://doi.org/10.1007/978-3-0348-8617-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Narasimhan, Raghavan Compact Riemann Surfaces Mathematics Mathematics, general Mathematik Kompakte Riemannsche Fläche (DE-588)4164852-3 gnd Riemannsche Fläche (DE-588)4049991-1 gnd |
subject_GND | (DE-588)4164852-3 (DE-588)4049991-1 |
title | Compact Riemann Surfaces |
title_auth | Compact Riemann Surfaces |
title_exact_search | Compact Riemann Surfaces |
title_full | Compact Riemann Surfaces by Raghavan Narasimhan |
title_fullStr | Compact Riemann Surfaces by Raghavan Narasimhan |
title_full_unstemmed | Compact Riemann Surfaces by Raghavan Narasimhan |
title_short | Compact Riemann Surfaces |
title_sort | compact riemann surfaces |
topic | Mathematics Mathematics, general Mathematik Kompakte Riemannsche Fläche (DE-588)4164852-3 gnd Riemannsche Fläche (DE-588)4049991-1 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Kompakte Riemannsche Fläche Riemannsche Fläche |
url | https://doi.org/10.1007/978-3-0348-8617-8 |
work_keys_str_mv | AT narasimhanraghavan compactriemannsurfaces |