Teichmüller Theory in Riemannian Geometry:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
1992
|
Schriftenreihe: | Lectures in Mathematics ETH Zürich, Department of Mathematics Research Institute of Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | These lecture notes are based on the joint work of the author and Arthur Fischer on Teichmiiller theory undertaken in the years 1980-1986. Since then many of our colleagues have encouraged us to publish our approach to the subject in a concise format, easily accessible to a broad mathematical audience. However, it was the invitation by the faculty of the ETH Ziirich to deliver the ETH N achdiplom-Vorlesungen on this material which provided the opportunity for the author to develop our research papers into a format suitable for mathematicians with a modest background in differential geometry. We also hoped it would provide the basis for a graduate course stressing the application of fundamental ideas in geometry. For this opportunity the author wishes to thank Eduard Zehnder and Jiirgen Moser, acting director and director of the Forschungsinstitut fiir Mathematik at the ETH, Gisbert Wiistholz, responsible for the Nachdiplom Vorlesungen and the entire ETH faculty for their support and warm hospitality. This new approach to Teichmiiller theory presented here was undertaken for two reasons. First, it was clear that the classical approach, using the theory of extremal quasi-conformal mappings (in this approach we completely avoid the use of quasi-conformal maps) was not easily applicable to the theory of minimal surfaces, a field of interest of the author over many years. Second, many other active mathematicians, who at various times needed some Teichmiiller theory, have found the classical approach inaccessible to them |
Beschreibung: | 1 Online-Ressource (228p) |
ISBN: | 9783034886130 9783764327354 |
DOI: | 10.1007/978-3-0348-8613-0 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422184 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1992 |||| o||u| ||||||eng d | ||
020 | |a 9783034886130 |c Online |9 978-3-0348-8613-0 | ||
020 | |a 9783764327354 |c Print |9 978-3-7643-2735-4 | ||
024 | 7 | |a 10.1007/978-3-0348-8613-0 |2 doi | |
035 | |a (OCoLC)863674268 | ||
035 | |a (DE-599)BVBBV042422184 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 514.74 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Tromba, Anthony J. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Teichmüller Theory in Riemannian Geometry |c by Anthony J. Tromba |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1992 | |
300 | |a 1 Online-Ressource (228p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Lectures in Mathematics ETH Zürich, Department of Mathematics Research Institute of Mathematics | |
500 | |a These lecture notes are based on the joint work of the author and Arthur Fischer on Teichmiiller theory undertaken in the years 1980-1986. Since then many of our colleagues have encouraged us to publish our approach to the subject in a concise format, easily accessible to a broad mathematical audience. However, it was the invitation by the faculty of the ETH Ziirich to deliver the ETH N achdiplom-Vorlesungen on this material which provided the opportunity for the author to develop our research papers into a format suitable for mathematicians with a modest background in differential geometry. We also hoped it would provide the basis for a graduate course stressing the application of fundamental ideas in geometry. For this opportunity the author wishes to thank Eduard Zehnder and Jiirgen Moser, acting director and director of the Forschungsinstitut fiir Mathematik at the ETH, Gisbert Wiistholz, responsible for the Nachdiplom Vorlesungen and the entire ETH faculty for their support and warm hospitality. This new approach to Teichmiiller theory presented here was undertaken for two reasons. First, it was clear that the classical approach, using the theory of extremal quasi-conformal mappings (in this approach we completely avoid the use of quasi-conformal maps) was not easily applicable to the theory of minimal surfaces, a field of interest of the author over many years. Second, many other active mathematicians, who at various times needed some Teichmiiller theory, have found the classical approach inaccessible to them | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Global Analysis and Analysis on Manifolds | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Teichmüller-Raum |0 (DE-588)4131425-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Riemannsche Geometrie |0 (DE-588)4128462-8 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Riemannsche Geometrie |0 (DE-588)4128462-8 |D s |
689 | 0 | 1 | |a Teichmüller-Raum |0 (DE-588)4131425-6 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8613-0 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857601 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096245346304 |
---|---|
any_adam_object | |
author | Tromba, Anthony J. |
author_facet | Tromba, Anthony J. |
author_role | aut |
author_sort | Tromba, Anthony J. |
author_variant | a j t aj ajt |
building | Verbundindex |
bvnumber | BV042422184 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863674268 (DE-599)BVBBV042422184 |
dewey-full | 514.74 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.74 |
dewey-search | 514.74 |
dewey-sort | 3514.74 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8613-0 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03347nmm a2200505zc 4500</leader><controlfield tag="001">BV042422184</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1992 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034886130</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8613-0</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783764327354</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-7643-2735-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8613-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863674268</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422184</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.74</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Tromba, Anthony J.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Teichmüller Theory in Riemannian Geometry</subfield><subfield code="c">by Anthony J. Tromba</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1992</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (228p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Lectures in Mathematics ETH Zürich, Department of Mathematics Research Institute of Mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">These lecture notes are based on the joint work of the author and Arthur Fischer on Teichmiiller theory undertaken in the years 1980-1986. Since then many of our colleagues have encouraged us to publish our approach to the subject in a concise format, easily accessible to a broad mathematical audience. However, it was the invitation by the faculty of the ETH Ziirich to deliver the ETH N achdiplom-Vorlesungen on this material which provided the opportunity for the author to develop our research papers into a format suitable for mathematicians with a modest background in differential geometry. We also hoped it would provide the basis for a graduate course stressing the application of fundamental ideas in geometry. For this opportunity the author wishes to thank Eduard Zehnder and Jiirgen Moser, acting director and director of the Forschungsinstitut fiir Mathematik at the ETH, Gisbert Wiistholz, responsible for the Nachdiplom Vorlesungen and the entire ETH faculty for their support and warm hospitality. This new approach to Teichmiiller theory presented here was undertaken for two reasons. First, it was clear that the classical approach, using the theory of extremal quasi-conformal mappings (in this approach we completely avoid the use of quasi-conformal maps) was not easily applicable to the theory of minimal surfaces, a field of interest of the author over many years. Second, many other active mathematicians, who at various times needed some Teichmiiller theory, have found the classical approach inaccessible to them</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global Analysis and Analysis on Manifolds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Teichmüller-Raum</subfield><subfield code="0">(DE-588)4131425-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Riemannsche Geometrie</subfield><subfield code="0">(DE-588)4128462-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Teichmüller-Raum</subfield><subfield code="0">(DE-588)4131425-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8613-0</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857601</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422184 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034886130 9783764327354 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857601 |
oclc_num | 863674268 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (228p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1992 |
publishDateSearch | 1992 |
publishDateSort | 1992 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Lectures in Mathematics ETH Zürich, Department of Mathematics Research Institute of Mathematics |
spelling | Tromba, Anthony J. Verfasser aut Teichmüller Theory in Riemannian Geometry by Anthony J. Tromba Basel Birkhäuser Basel 1992 1 Online-Ressource (228p) txt rdacontent c rdamedia cr rdacarrier Lectures in Mathematics ETH Zürich, Department of Mathematics Research Institute of Mathematics These lecture notes are based on the joint work of the author and Arthur Fischer on Teichmiiller theory undertaken in the years 1980-1986. Since then many of our colleagues have encouraged us to publish our approach to the subject in a concise format, easily accessible to a broad mathematical audience. However, it was the invitation by the faculty of the ETH Ziirich to deliver the ETH N achdiplom-Vorlesungen on this material which provided the opportunity for the author to develop our research papers into a format suitable for mathematicians with a modest background in differential geometry. We also hoped it would provide the basis for a graduate course stressing the application of fundamental ideas in geometry. For this opportunity the author wishes to thank Eduard Zehnder and Jiirgen Moser, acting director and director of the Forschungsinstitut fiir Mathematik at the ETH, Gisbert Wiistholz, responsible for the Nachdiplom Vorlesungen and the entire ETH faculty for their support and warm hospitality. This new approach to Teichmiiller theory presented here was undertaken for two reasons. First, it was clear that the classical approach, using the theory of extremal quasi-conformal mappings (in this approach we completely avoid the use of quasi-conformal maps) was not easily applicable to the theory of minimal surfaces, a field of interest of the author over many years. Second, many other active mathematicians, who at various times needed some Teichmiiller theory, have found the classical approach inaccessible to them Mathematics Global analysis Global differential geometry Global Analysis and Analysis on Manifolds Differential Geometry Mathematik Teichmüller-Raum (DE-588)4131425-6 gnd rswk-swf Riemannsche Geometrie (DE-588)4128462-8 gnd rswk-swf Riemannsche Geometrie (DE-588)4128462-8 s Teichmüller-Raum (DE-588)4131425-6 s 1\p DE-604 https://doi.org/10.1007/978-3-0348-8613-0 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Tromba, Anthony J. Teichmüller Theory in Riemannian Geometry Mathematics Global analysis Global differential geometry Global Analysis and Analysis on Manifolds Differential Geometry Mathematik Teichmüller-Raum (DE-588)4131425-6 gnd Riemannsche Geometrie (DE-588)4128462-8 gnd |
subject_GND | (DE-588)4131425-6 (DE-588)4128462-8 |
title | Teichmüller Theory in Riemannian Geometry |
title_auth | Teichmüller Theory in Riemannian Geometry |
title_exact_search | Teichmüller Theory in Riemannian Geometry |
title_full | Teichmüller Theory in Riemannian Geometry by Anthony J. Tromba |
title_fullStr | Teichmüller Theory in Riemannian Geometry by Anthony J. Tromba |
title_full_unstemmed | Teichmüller Theory in Riemannian Geometry by Anthony J. Tromba |
title_short | Teichmüller Theory in Riemannian Geometry |
title_sort | teichmuller theory in riemannian geometry |
topic | Mathematics Global analysis Global differential geometry Global Analysis and Analysis on Manifolds Differential Geometry Mathematik Teichmüller-Raum (DE-588)4131425-6 gnd Riemannsche Geometrie (DE-588)4128462-8 gnd |
topic_facet | Mathematics Global analysis Global differential geometry Global Analysis and Analysis on Manifolds Differential Geometry Mathematik Teichmüller-Raum Riemannsche Geometrie |
url | https://doi.org/10.1007/978-3-0348-8613-0 |
work_keys_str_mv | AT trombaanthonyj teichmullertheoryinriemanniangeometry |