Residue Currents and Bezout Identities:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
1993
|
Schriftenreihe: | Progress in Mathematics
114 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | A very primitive form of this monograph has existed for about two and a half years in the form of handwritten notes of a course that Alain Y ger gave at the University of Maryland. The objective, all along, has been to present a coherent picture of the almost mysterious role that analytic methods and, in particular, multidimensional residues, have recently played in obtaining effective estimates for problems in commutative algebra [71;5]* Our original interest in the subject rested on the fact that the study of many questions in harmonic analysis, like finding all distribution solutions (or finding out whether there are any) to a system of linear partial differential equations with constant coefficients (or, more generally, convolution equations) in ]R. n, can be translated into interpolation problems in spaces of entire functions with growth conditions. This idea, which one can trace back to Euler, is the basis of Ehrenpreis's Fundamental Principle for partial differential equations [37;5], [56;5], and has been explicitly stated, for convolution equations, in the work of Berenstein and Taylor [9;5] (we refer to the survey [8;5] for complete references. ) One important point in [9;5] was the use of the Jacobi interpolation formula, but otherwise, the representation of solutions obtained in that paper were not explicit because of the use of a-methods to prove interpolation results |
Beschreibung: | 1 Online-Ressource (XI, 160 p) |
ISBN: | 9783034885607 9783034896801 |
DOI: | 10.1007/978-3-0348-8560-7 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422165 | ||
003 | DE-604 | ||
005 | 20170922 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1993 |||| o||u| ||||||eng d | ||
020 | |a 9783034885607 |c Online |9 978-3-0348-8560-7 | ||
020 | |a 9783034896801 |c Print |9 978-3-0348-9680-1 | ||
024 | 7 | |a 10.1007/978-3-0348-8560-7 |2 doi | |
035 | |a (OCoLC)1184438053 | ||
035 | |a (DE-599)BVBBV042422165 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Berenstein, Carlos A. |d 1944-2019 |e Verfasser |0 (DE-588)130607010 |4 aut | |
245 | 1 | 0 | |a Residue Currents and Bezout Identities |c by Carlos A. Berenstein, Alekos Vidras, Roger Gay, Alain Yger |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1993 | |
300 | |a 1 Online-Ressource (XI, 160 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 1 | |a Progress in Mathematics |v 114 | |
500 | |a A very primitive form of this monograph has existed for about two and a half years in the form of handwritten notes of a course that Alain Y ger gave at the University of Maryland. The objective, all along, has been to present a coherent picture of the almost mysterious role that analytic methods and, in particular, multidimensional residues, have recently played in obtaining effective estimates for problems in commutative algebra [71;5]* Our original interest in the subject rested on the fact that the study of many questions in harmonic analysis, like finding all distribution solutions (or finding out whether there are any) to a system of linear partial differential equations with constant coefficients (or, more generally, convolution equations) in ]R. n, can be translated into interpolation problems in spaces of entire functions with growth conditions. This idea, which one can trace back to Euler, is the basis of Ehrenpreis's Fundamental Principle for partial differential equations [37;5], [56;5], and has been explicitly stated, for convolution equations, in the work of Berenstein and Taylor [9;5] (we refer to the survey [8;5] for complete references. ) One important point in [9;5] was the use of the Jacobi interpolation formula, but otherwise, the representation of solutions obtained in that paper were not explicit because of the use of a-methods to prove interpolation results | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Residuum |0 (DE-588)4271170-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bézout-Identität |0 (DE-588)4336292-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Residuenkalkül |0 (DE-588)4177841-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Bézout-Satz |0 (DE-588)4145209-4 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Bézout-Satz |0 (DE-588)4145209-4 |D s |
689 | 0 | 1 | |a Residuenkalkül |0 (DE-588)4177841-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
689 | 1 | 0 | |a Residuum |0 (DE-588)4271170-8 |D s |
689 | 1 | |8 2\p |5 DE-604 | |
689 | 2 | 0 | |a Bézout-Identität |0 (DE-588)4336292-8 |D s |
689 | 2 | |8 3\p |5 DE-604 | |
700 | 1 | |a Vidras, Alekos |e Sonstige |4 oth | |
700 | 1 | |a Gay, Roger |e Sonstige |4 oth | |
700 | 1 | |a Yger, Alain |e Sonstige |4 oth | |
830 | 0 | |a Progress in Mathematics |v 114 |w (DE-604)BV000004120 |9 114 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8560-7 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857582 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 3\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096190820352 |
---|---|
any_adam_object | |
author | Berenstein, Carlos A. 1944-2019 |
author_GND | (DE-588)130607010 |
author_facet | Berenstein, Carlos A. 1944-2019 |
author_role | aut |
author_sort | Berenstein, Carlos A. 1944-2019 |
author_variant | c a b ca cab |
building | Verbundindex |
bvnumber | BV042422165 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184438053 (DE-599)BVBBV042422165 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8560-7 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03718nmm a2200613zcb4500</leader><controlfield tag="001">BV042422165</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20170922 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1993 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034885607</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8560-7</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034896801</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9680-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8560-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184438053</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422165</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Berenstein, Carlos A.</subfield><subfield code="d">1944-2019</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)130607010</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Residue Currents and Bezout Identities</subfield><subfield code="c">by Carlos A. Berenstein, Alekos Vidras, Roger Gay, Alain Yger</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1993</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 160 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="1" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">114</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">A very primitive form of this monograph has existed for about two and a half years in the form of handwritten notes of a course that Alain Y ger gave at the University of Maryland. The objective, all along, has been to present a coherent picture of the almost mysterious role that analytic methods and, in particular, multidimensional residues, have recently played in obtaining effective estimates for problems in commutative algebra [71;5]* Our original interest in the subject rested on the fact that the study of many questions in harmonic analysis, like finding all distribution solutions (or finding out whether there are any) to a system of linear partial differential equations with constant coefficients (or, more generally, convolution equations) in ]R. n, can be translated into interpolation problems in spaces of entire functions with growth conditions. This idea, which one can trace back to Euler, is the basis of Ehrenpreis's Fundamental Principle for partial differential equations [37;5], [56;5], and has been explicitly stated, for convolution equations, in the work of Berenstein and Taylor [9;5] (we refer to the survey [8;5] for complete references. ) One important point in [9;5] was the use of the Jacobi interpolation formula, but otherwise, the representation of solutions obtained in that paper were not explicit because of the use of a-methods to prove interpolation results</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Residuum</subfield><subfield code="0">(DE-588)4271170-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bézout-Identität</subfield><subfield code="0">(DE-588)4336292-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Residuenkalkül</subfield><subfield code="0">(DE-588)4177841-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Bézout-Satz</subfield><subfield code="0">(DE-588)4145209-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Bézout-Satz</subfield><subfield code="0">(DE-588)4145209-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Residuenkalkül</subfield><subfield code="0">(DE-588)4177841-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="1" ind2="0"><subfield code="a">Residuum</subfield><subfield code="0">(DE-588)4271170-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="689" ind1="2" ind2="0"><subfield code="a">Bézout-Identität</subfield><subfield code="0">(DE-588)4336292-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="2" ind2=" "><subfield code="8">3\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Vidras, Alekos</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gay, Roger</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yger, Alain</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="830" ind1=" " ind2="0"><subfield code="a">Progress in Mathematics</subfield><subfield code="v">114</subfield><subfield code="w">(DE-604)BV000004120</subfield><subfield code="9">114</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8560-7</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857582</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">3\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422165 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034885607 9783034896801 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857582 |
oclc_num | 1184438053 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XI, 160 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1993 |
publishDateSearch | 1993 |
publishDateSort | 1993 |
publisher | Birkhäuser Basel |
record_format | marc |
series | Progress in Mathematics |
series2 | Progress in Mathematics |
spelling | Berenstein, Carlos A. 1944-2019 Verfasser (DE-588)130607010 aut Residue Currents and Bezout Identities by Carlos A. Berenstein, Alekos Vidras, Roger Gay, Alain Yger Basel Birkhäuser Basel 1993 1 Online-Ressource (XI, 160 p) txt rdacontent c rdamedia cr rdacarrier Progress in Mathematics 114 A very primitive form of this monograph has existed for about two and a half years in the form of handwritten notes of a course that Alain Y ger gave at the University of Maryland. The objective, all along, has been to present a coherent picture of the almost mysterious role that analytic methods and, in particular, multidimensional residues, have recently played in obtaining effective estimates for problems in commutative algebra [71;5]* Our original interest in the subject rested on the fact that the study of many questions in harmonic analysis, like finding all distribution solutions (or finding out whether there are any) to a system of linear partial differential equations with constant coefficients (or, more generally, convolution equations) in ]R. n, can be translated into interpolation problems in spaces of entire functions with growth conditions. This idea, which one can trace back to Euler, is the basis of Ehrenpreis's Fundamental Principle for partial differential equations [37;5], [56;5], and has been explicitly stated, for convolution equations, in the work of Berenstein and Taylor [9;5] (we refer to the survey [8;5] for complete references. ) One important point in [9;5] was the use of the Jacobi interpolation formula, but otherwise, the representation of solutions obtained in that paper were not explicit because of the use of a-methods to prove interpolation results Mathematics Mathematics, general Mathematik Residuum (DE-588)4271170-8 gnd rswk-swf Bézout-Identität (DE-588)4336292-8 gnd rswk-swf Residuenkalkül (DE-588)4177841-8 gnd rswk-swf Bézout-Satz (DE-588)4145209-4 gnd rswk-swf Bézout-Satz (DE-588)4145209-4 s Residuenkalkül (DE-588)4177841-8 s 1\p DE-604 Residuum (DE-588)4271170-8 s 2\p DE-604 Bézout-Identität (DE-588)4336292-8 s 3\p DE-604 Vidras, Alekos Sonstige oth Gay, Roger Sonstige oth Yger, Alain Sonstige oth Progress in Mathematics 114 (DE-604)BV000004120 114 https://doi.org/10.1007/978-3-0348-8560-7 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 3\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Berenstein, Carlos A. 1944-2019 Residue Currents and Bezout Identities Progress in Mathematics Mathematics Mathematics, general Mathematik Residuum (DE-588)4271170-8 gnd Bézout-Identität (DE-588)4336292-8 gnd Residuenkalkül (DE-588)4177841-8 gnd Bézout-Satz (DE-588)4145209-4 gnd |
subject_GND | (DE-588)4271170-8 (DE-588)4336292-8 (DE-588)4177841-8 (DE-588)4145209-4 |
title | Residue Currents and Bezout Identities |
title_auth | Residue Currents and Bezout Identities |
title_exact_search | Residue Currents and Bezout Identities |
title_full | Residue Currents and Bezout Identities by Carlos A. Berenstein, Alekos Vidras, Roger Gay, Alain Yger |
title_fullStr | Residue Currents and Bezout Identities by Carlos A. Berenstein, Alekos Vidras, Roger Gay, Alain Yger |
title_full_unstemmed | Residue Currents and Bezout Identities by Carlos A. Berenstein, Alekos Vidras, Roger Gay, Alain Yger |
title_short | Residue Currents and Bezout Identities |
title_sort | residue currents and bezout identities |
topic | Mathematics Mathematics, general Mathematik Residuum (DE-588)4271170-8 gnd Bézout-Identität (DE-588)4336292-8 gnd Residuenkalkül (DE-588)4177841-8 gnd Bézout-Satz (DE-588)4145209-4 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Residuum Bézout-Identität Residuenkalkül Bézout-Satz |
url | https://doi.org/10.1007/978-3-0348-8560-7 |
volume_link | (DE-604)BV000004120 |
work_keys_str_mv | AT berensteincarlosa residuecurrentsandbezoutidentities AT vidrasalekos residuecurrentsandbezoutidentities AT gayroger residuecurrentsandbezoutidentities AT ygeralain residuecurrentsandbezoutidentities |