Symplectic Invariants and Hamiltonian Dynamics:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
1994
|
Schriftenreihe: | Birkhäuser Advanced Texts Basler Lehrbücher
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The discoveries of the past decade have opened new perspectives for the old field of Hamiltonian systems and led to the creation of a new field: symplectic topology. Surprising rigidity phenomena demonstrate that the nature of symplectic map pings is very different from that of volume preserving mappings which raised new questions, many of them still unanswered. On the other hand, due to the analysis of an old variational principle in classical mechanics, global periodic phenomena in Hamiltonian systems have been established. As it turns out, these seemingly differ ent phenomena are mysteriously related. One of the links is a class of symplectic invariants, called symplectic capacities. These invariants are the main theme of this book which grew out of lectures given by the authors at Rutgers University, the RUB Bochum and at the ETH Zurich (1991) and also at the Borel Seminar in Bern 1992. Since the lectures did not require any previous knowledge, only a few and rather elementary topics were selected and proved in detail. Moreover, our se lection has been prompted by a single principle: the action principle of mechanics. The action functional for loops in the phase space, given by 1 Fh) = J pdq -J H(t, 'Y(t)) dt , 'Y 0 differs from the old Hamiltonian principle in the configuration space defined by a Lagrangian. The critical points of F are those loops 'Y which solve the Hamiltonian equations associated with the Hamiltonian H and hence are the periodic orbits |
Beschreibung: | 1 Online-Ressource (XIII, 346 p) |
ISBN: | 9783034885409 9783034896719 |
DOI: | 10.1007/978-3-0348-8540-9 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422157 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1994 |||| o||u| ||||||eng d | ||
020 | |a 9783034885409 |c Online |9 978-3-0348-8540-9 | ||
020 | |a 9783034896719 |c Print |9 978-3-0348-9671-9 | ||
024 | 7 | |a 10.1007/978-3-0348-8540-9 |2 doi | |
035 | |a (OCoLC)1184302982 | ||
035 | |a (DE-599)BVBBV042422157 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.36 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Hofer, Helmut |e Verfasser |4 aut | |
245 | 1 | 0 | |a Symplectic Invariants and Hamiltonian Dynamics |c by Helmut Hofer, Eduard Zehnder |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1994 | |
300 | |a 1 Online-Ressource (XIII, 346 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Birkhäuser Advanced Texts Basler Lehrbücher | |
500 | |a The discoveries of the past decade have opened new perspectives for the old field of Hamiltonian systems and led to the creation of a new field: symplectic topology. Surprising rigidity phenomena demonstrate that the nature of symplectic map pings is very different from that of volume preserving mappings which raised new questions, many of them still unanswered. On the other hand, due to the analysis of an old variational principle in classical mechanics, global periodic phenomena in Hamiltonian systems have been established. As it turns out, these seemingly differ ent phenomena are mysteriously related. One of the links is a class of symplectic invariants, called symplectic capacities. These invariants are the main theme of this book which grew out of lectures given by the authors at Rutgers University, the RUB Bochum and at the ETH Zurich (1991) and also at the Borel Seminar in Bern 1992. Since the lectures did not require any previous knowledge, only a few and rather elementary topics were selected and proved in detail. Moreover, our se lection has been prompted by a single principle: the action principle of mechanics. The action functional for loops in the phase space, given by 1 Fh) = J pdq -J H(t, 'Y(t)) dt , 'Y 0 differs from the old Hamiltonian principle in the configuration space defined by a Lagrangian. The critical points of F are those loops 'Y which solve the Hamiltonian equations associated with the Hamiltonian H and hence are the periodic orbits | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Cell aggregation / Mathematics | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Manifolds and Cell Complexes (incl. Diff.Topology) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Hamiltonsches System |0 (DE-588)4139943-2 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symplektische Invariante |0 (DE-588)4350963-0 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Hamiltonsches System |0 (DE-588)4139943-2 |D s |
689 | 0 | 1 | |a Symplektische Invariante |0 (DE-588)4350963-0 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Zehnder, Eduard |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8540-9 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857574 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096162508800 |
---|---|
any_adam_object | |
author | Hofer, Helmut |
author_facet | Hofer, Helmut |
author_role | aut |
author_sort | Hofer, Helmut |
author_variant | h h hh |
building | Verbundindex |
bvnumber | BV042422157 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184302982 (DE-599)BVBBV042422157 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8540-9 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03418nmm a2200541zc 4500</leader><controlfield tag="001">BV042422157</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034885409</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8540-9</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034896719</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9671-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8540-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184302982</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422157</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hofer, Helmut</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Symplectic Invariants and Hamiltonian Dynamics</subfield><subfield code="c">by Helmut Hofer, Eduard Zehnder</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XIII, 346 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Birkhäuser Advanced Texts Basler Lehrbücher</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The discoveries of the past decade have opened new perspectives for the old field of Hamiltonian systems and led to the creation of a new field: symplectic topology. Surprising rigidity phenomena demonstrate that the nature of symplectic map pings is very different from that of volume preserving mappings which raised new questions, many of them still unanswered. On the other hand, due to the analysis of an old variational principle in classical mechanics, global periodic phenomena in Hamiltonian systems have been established. As it turns out, these seemingly differ ent phenomena are mysteriously related. One of the links is a class of symplectic invariants, called symplectic capacities. These invariants are the main theme of this book which grew out of lectures given by the authors at Rutgers University, the RUB Bochum and at the ETH Zurich (1991) and also at the Borel Seminar in Bern 1992. Since the lectures did not require any previous knowledge, only a few and rather elementary topics were selected and proved in detail. Moreover, our se lection has been prompted by a single principle: the action principle of mechanics. The action functional for loops in the phase space, given by 1 Fh) = J pdq -J H(t, 'Y(t)) dt , 'Y 0 differs from the old Hamiltonian principle in the configuration space defined by a Lagrangian. The critical points of F are those loops 'Y which solve the Hamiltonian equations associated with the Hamiltonian H and hence are the periodic orbits</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell aggregation / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes (incl. Diff.Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symplektische Invariante</subfield><subfield code="0">(DE-588)4350963-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Hamiltonsches System</subfield><subfield code="0">(DE-588)4139943-2</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Symplektische Invariante</subfield><subfield code="0">(DE-588)4350963-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zehnder, Eduard</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8540-9</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857574</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422157 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034885409 9783034896719 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857574 |
oclc_num | 1184302982 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XIII, 346 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Birkhäuser Advanced Texts Basler Lehrbücher |
spelling | Hofer, Helmut Verfasser aut Symplectic Invariants and Hamiltonian Dynamics by Helmut Hofer, Eduard Zehnder Basel Birkhäuser Basel 1994 1 Online-Ressource (XIII, 346 p) txt rdacontent c rdamedia cr rdacarrier Birkhäuser Advanced Texts Basler Lehrbücher The discoveries of the past decade have opened new perspectives for the old field of Hamiltonian systems and led to the creation of a new field: symplectic topology. Surprising rigidity phenomena demonstrate that the nature of symplectic map pings is very different from that of volume preserving mappings which raised new questions, many of them still unanswered. On the other hand, due to the analysis of an old variational principle in classical mechanics, global periodic phenomena in Hamiltonian systems have been established. As it turns out, these seemingly differ ent phenomena are mysteriously related. One of the links is a class of symplectic invariants, called symplectic capacities. These invariants are the main theme of this book which grew out of lectures given by the authors at Rutgers University, the RUB Bochum and at the ETH Zurich (1991) and also at the Borel Seminar in Bern 1992. Since the lectures did not require any previous knowledge, only a few and rather elementary topics were selected and proved in detail. Moreover, our se lection has been prompted by a single principle: the action principle of mechanics. The action functional for loops in the phase space, given by 1 Fh) = J pdq -J H(t, 'Y(t)) dt , 'Y 0 differs from the old Hamiltonian principle in the configuration space defined by a Lagrangian. The critical points of F are those loops 'Y which solve the Hamiltonian equations associated with the Hamiltonian H and hence are the periodic orbits Mathematics Global analysis (Mathematics) Global differential geometry Cell aggregation / Mathematics Differential Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Analysis Mathematik Hamiltonsches System (DE-588)4139943-2 gnd rswk-swf Symplektische Invariante (DE-588)4350963-0 gnd rswk-swf Hamiltonsches System (DE-588)4139943-2 s Symplektische Invariante (DE-588)4350963-0 s 1\p DE-604 Zehnder, Eduard Sonstige oth https://doi.org/10.1007/978-3-0348-8540-9 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hofer, Helmut Symplectic Invariants and Hamiltonian Dynamics Mathematics Global analysis (Mathematics) Global differential geometry Cell aggregation / Mathematics Differential Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Analysis Mathematik Hamiltonsches System (DE-588)4139943-2 gnd Symplektische Invariante (DE-588)4350963-0 gnd |
subject_GND | (DE-588)4139943-2 (DE-588)4350963-0 |
title | Symplectic Invariants and Hamiltonian Dynamics |
title_auth | Symplectic Invariants and Hamiltonian Dynamics |
title_exact_search | Symplectic Invariants and Hamiltonian Dynamics |
title_full | Symplectic Invariants and Hamiltonian Dynamics by Helmut Hofer, Eduard Zehnder |
title_fullStr | Symplectic Invariants and Hamiltonian Dynamics by Helmut Hofer, Eduard Zehnder |
title_full_unstemmed | Symplectic Invariants and Hamiltonian Dynamics by Helmut Hofer, Eduard Zehnder |
title_short | Symplectic Invariants and Hamiltonian Dynamics |
title_sort | symplectic invariants and hamiltonian dynamics |
topic | Mathematics Global analysis (Mathematics) Global differential geometry Cell aggregation / Mathematics Differential Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Analysis Mathematik Hamiltonsches System (DE-588)4139943-2 gnd Symplektische Invariante (DE-588)4350963-0 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Global differential geometry Cell aggregation / Mathematics Differential Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Analysis Mathematik Hamiltonsches System Symplektische Invariante |
url | https://doi.org/10.1007/978-3-0348-8540-9 |
work_keys_str_mv | AT hoferhelmut symplecticinvariantsandhamiltoniandynamics AT zehndereduard symplecticinvariantsandhamiltoniandynamics |