Nonselfadjoint Operators and Related Topics: Workshop on Operator Theory and Its Applications, Beersheva, February 24–28, 1992
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
1994
|
Schriftenreihe: | Operator Theory: Advances and Applications
73 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Our goal is to find Grabner bases for polynomials in four different sets of expressions: 1 x- , (1 - x)-1 (RESOL) X, 1 x- (1 - xy)-1 (EB) X, , y-1, (1-yx)-1 y, (1_y)-1 (1-x)-1 (preNF) (EB) plus and (1 - xy)1/2 (1 - yx )1/2 (NF) (preNF) plus and Most formulas in the theory of the Nagy-Foias operator model [NF] are polynomials in these expressions where x = T and y = T*. Complicated polynomials can often be simplified by applying "replacement rules". For example, the polynomial (1 - xy)-2 - 2xy(1-xy)-2 + xy2 (1 - xy)-2 -1 simplifies to O. This can be seen by three applications of the replacement rule (1-xy) -1 xy -t (1 - xy)-1 -1 which is true because of the definition of (1-xy)-1. A replacement rule consists of a left hand side (LHS) and a right hand side (RHS). The LHS will always be a monomial. The RHS will be a polynomial whose terms are "simpler" (in a sense to be made precise) than the LHS. An expression is reduced by repeatedly replacing any occurrence of a LHS by the corresponding RHS. The monomials will be well-ordered, so the reduction procedure will terminate after finitely many steps. Our aim is to provide a list of substitution rules for the classes of expressions above. These rules, when implemented on a computer, provide an efficient automatic simplification process. We discuss and define the ordering on monomials later |
Beschreibung: | 1 Online-Ressource (X, 422 p) |
ISBN: | 9783034885225 9783034896634 |
DOI: | 10.1007/978-3-0348-8522-5 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422150 | ||
003 | DE-604 | ||
005 | 20190315 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1994 |||| o||u| ||||||eng d | ||
020 | |a 9783034885225 |c Online |9 978-3-0348-8522-5 | ||
020 | |a 9783034896634 |c Print |9 978-3-0348-9663-4 | ||
024 | 7 | |a 10.1007/978-3-0348-8522-5 |2 doi | |
035 | |a (OCoLC)863765146 | ||
035 | |a (DE-599)BVBBV042422150 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Feintuch, Avraham |e Verfasser |0 (DE-588)1158228341 |4 aut | |
245 | 1 | 0 | |a Nonselfadjoint Operators and Related Topics |b Workshop on Operator Theory and Its Applications, Beersheva, February 24–28, 1992 |c edited by A. Feintuch, I. Gohberg |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1994 | |
300 | |a 1 Online-Ressource (X, 422 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Operator Theory: Advances and Applications |v 73 | |
500 | |a Our goal is to find Grabner bases for polynomials in four different sets of expressions: 1 x- , (1 - x)-1 (RESOL) X, 1 x- (1 - xy)-1 (EB) X, , y-1, (1-yx)-1 y, (1_y)-1 (1-x)-1 (preNF) (EB) plus and (1 - xy)1/2 (1 - yx )1/2 (NF) (preNF) plus and Most formulas in the theory of the Nagy-Foias operator model [NF] are polynomials in these expressions where x = T and y = T*. Complicated polynomials can often be simplified by applying "replacement rules". For example, the polynomial (1 - xy)-2 - 2xy(1-xy)-2 + xy2 (1 - xy)-2 -1 simplifies to O. This can be seen by three applications of the replacement rule (1-xy) -1 xy -t (1 - xy)-1 -1 which is true because of the definition of (1-xy)-1. A replacement rule consists of a left hand side (LHS) and a right hand side (RHS). The LHS will always be a monomial. The RHS will be a polynomial whose terms are "simpler" (in a sense to be made precise) than the LHS. An expression is reduced by repeatedly replacing any occurrence of a LHS by the corresponding RHS. The monomials will be well-ordered, so the reduction procedure will terminate after finitely many steps. Our aim is to provide a list of substitution rules for the classes of expressions above. These rules, when implemented on a computer, provide an efficient automatic simplification process. We discuss and define the ordering on monomials later | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global analysis (Mathematics) | |
650 | 4 | |a Analysis | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Operatortheorie |0 (DE-588)4075665-8 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |y 1992 |z Beer Sheva |2 gnd-content | |
689 | 0 | 0 | |a Operatortheorie |0 (DE-588)4075665-8 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Gohberg, Yiśrāʿēl Z. |d 1928-2009 |e Sonstige |0 (DE-588)118915878 |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8522-5 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857567 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096157265920 |
---|---|
any_adam_object | |
author | Feintuch, Avraham |
author_GND | (DE-588)1158228341 (DE-588)118915878 |
author_facet | Feintuch, Avraham |
author_role | aut |
author_sort | Feintuch, Avraham |
author_variant | a f af |
building | Verbundindex |
bvnumber | BV042422150 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863765146 (DE-599)BVBBV042422150 |
dewey-full | 515 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515 |
dewey-search | 515 |
dewey-sort | 3515 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8522-5 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03253nmm a2200493zcb4500</leader><controlfield tag="001">BV042422150</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190315 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034885225</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8522-5</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034896634</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9663-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8522-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863765146</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422150</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Feintuch, Avraham</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1158228341</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonselfadjoint Operators and Related Topics</subfield><subfield code="b">Workshop on Operator Theory and Its Applications, Beersheva, February 24–28, 1992</subfield><subfield code="c">edited by A. Feintuch, I. Gohberg</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (X, 422 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Operator Theory: Advances and Applications</subfield><subfield code="v">73</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Our goal is to find Grabner bases for polynomials in four different sets of expressions: 1 x- , (1 - x)-1 (RESOL) X, 1 x- (1 - xy)-1 (EB) X, , y-1, (1-yx)-1 y, (1_y)-1 (1-x)-1 (preNF) (EB) plus and (1 - xy)1/2 (1 - yx )1/2 (NF) (preNF) plus and Most formulas in the theory of the Nagy-Foias operator model [NF] are polynomials in these expressions where x = T and y = T*. Complicated polynomials can often be simplified by applying "replacement rules". For example, the polynomial (1 - xy)-2 - 2xy(1-xy)-2 + xy2 (1 - xy)-2 -1 simplifies to O. This can be seen by three applications of the replacement rule (1-xy) -1 xy -t (1 - xy)-1 -1 which is true because of the definition of (1-xy)-1. A replacement rule consists of a left hand side (LHS) and a right hand side (RHS). The LHS will always be a monomial. The RHS will be a polynomial whose terms are "simpler" (in a sense to be made precise) than the LHS. An expression is reduced by repeatedly replacing any occurrence of a LHS by the corresponding RHS. The monomials will be well-ordered, so the reduction procedure will terminate after finitely many steps. Our aim is to provide a list of substitution rules for the classes of expressions above. These rules, when implemented on a computer, provide an efficient automatic simplification process. We discuss and define the ordering on monomials later</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global analysis (Mathematics)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Operatortheorie</subfield><subfield code="0">(DE-588)4075665-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1992</subfield><subfield code="z">Beer Sheva</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Operatortheorie</subfield><subfield code="0">(DE-588)4075665-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gohberg, Yiśrāʿēl Z.</subfield><subfield code="d">1928-2009</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)118915878</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8522-5</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857567</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift 1992 Beer Sheva gnd-content |
genre_facet | Konferenzschrift 1992 Beer Sheva |
id | DE-604.BV042422150 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034885225 9783034896634 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857567 |
oclc_num | 863765146 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (X, 422 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Operator Theory: Advances and Applications |
spelling | Feintuch, Avraham Verfasser (DE-588)1158228341 aut Nonselfadjoint Operators and Related Topics Workshop on Operator Theory and Its Applications, Beersheva, February 24–28, 1992 edited by A. Feintuch, I. Gohberg Basel Birkhäuser Basel 1994 1 Online-Ressource (X, 422 p) txt rdacontent c rdamedia cr rdacarrier Operator Theory: Advances and Applications 73 Our goal is to find Grabner bases for polynomials in four different sets of expressions: 1 x- , (1 - x)-1 (RESOL) X, 1 x- (1 - xy)-1 (EB) X, , y-1, (1-yx)-1 y, (1_y)-1 (1-x)-1 (preNF) (EB) plus and (1 - xy)1/2 (1 - yx )1/2 (NF) (preNF) plus and Most formulas in the theory of the Nagy-Foias operator model [NF] are polynomials in these expressions where x = T and y = T*. Complicated polynomials can often be simplified by applying "replacement rules". For example, the polynomial (1 - xy)-2 - 2xy(1-xy)-2 + xy2 (1 - xy)-2 -1 simplifies to O. This can be seen by three applications of the replacement rule (1-xy) -1 xy -t (1 - xy)-1 -1 which is true because of the definition of (1-xy)-1. A replacement rule consists of a left hand side (LHS) and a right hand side (RHS). The LHS will always be a monomial. The RHS will be a polynomial whose terms are "simpler" (in a sense to be made precise) than the LHS. An expression is reduced by repeatedly replacing any occurrence of a LHS by the corresponding RHS. The monomials will be well-ordered, so the reduction procedure will terminate after finitely many steps. Our aim is to provide a list of substitution rules for the classes of expressions above. These rules, when implemented on a computer, provide an efficient automatic simplification process. We discuss and define the ordering on monomials later Mathematics Global analysis (Mathematics) Analysis Mathematik Operatortheorie (DE-588)4075665-8 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift 1992 Beer Sheva gnd-content Operatortheorie (DE-588)4075665-8 s 2\p DE-604 Gohberg, Yiśrāʿēl Z. 1928-2009 Sonstige (DE-588)118915878 oth https://doi.org/10.1007/978-3-0348-8522-5 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Feintuch, Avraham Nonselfadjoint Operators and Related Topics Workshop on Operator Theory and Its Applications, Beersheva, February 24–28, 1992 Mathematics Global analysis (Mathematics) Analysis Mathematik Operatortheorie (DE-588)4075665-8 gnd |
subject_GND | (DE-588)4075665-8 (DE-588)1071861417 |
title | Nonselfadjoint Operators and Related Topics Workshop on Operator Theory and Its Applications, Beersheva, February 24–28, 1992 |
title_auth | Nonselfadjoint Operators and Related Topics Workshop on Operator Theory and Its Applications, Beersheva, February 24–28, 1992 |
title_exact_search | Nonselfadjoint Operators and Related Topics Workshop on Operator Theory and Its Applications, Beersheva, February 24–28, 1992 |
title_full | Nonselfadjoint Operators and Related Topics Workshop on Operator Theory and Its Applications, Beersheva, February 24–28, 1992 edited by A. Feintuch, I. Gohberg |
title_fullStr | Nonselfadjoint Operators and Related Topics Workshop on Operator Theory and Its Applications, Beersheva, February 24–28, 1992 edited by A. Feintuch, I. Gohberg |
title_full_unstemmed | Nonselfadjoint Operators and Related Topics Workshop on Operator Theory and Its Applications, Beersheva, February 24–28, 1992 edited by A. Feintuch, I. Gohberg |
title_short | Nonselfadjoint Operators and Related Topics |
title_sort | nonselfadjoint operators and related topics workshop on operator theory and its applications beersheva february 24 28 1992 |
title_sub | Workshop on Operator Theory and Its Applications, Beersheva, February 24–28, 1992 |
topic | Mathematics Global analysis (Mathematics) Analysis Mathematik Operatortheorie (DE-588)4075665-8 gnd |
topic_facet | Mathematics Global analysis (Mathematics) Analysis Mathematik Operatortheorie Konferenzschrift 1992 Beer Sheva |
url | https://doi.org/10.1007/978-3-0348-8522-5 |
work_keys_str_mv | AT feintuchavraham nonselfadjointoperatorsandrelatedtopicsworkshoponoperatortheoryanditsapplicationsbeershevafebruary24281992 AT gohbergyisraʿelz nonselfadjointoperatorsandrelatedtopicsworkshoponoperatortheoryanditsapplicationsbeershevafebruary24281992 |