Nonselfadjoint Operators and Related Topics: Workshop on Operator Theory and Its Applications, Beersheva, February 24–28, 1992
Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Feintuch, Avraham (VerfasserIn)
Format: Elektronisch E-Book
Sprache:English
Veröffentlicht: Basel Birkhäuser Basel 1994
Schriftenreihe:Operator Theory: Advances and Applications 73
Schlagworte:
Online-Zugang:Volltext
Beschreibung:Our goal is to find Grabner bases for polynomials in four different sets of expressions: 1 x- , (1 - x)-1 (RESOL) X, 1 x- (1 - xy)-1 (EB) X, , y-1, (1-yx)-1 y, (1_y)-1 (1-x)-1 (preNF) (EB) plus and (1 - xy)1/2 (1 - yx )1/2 (NF) (preNF) plus and Most formulas in the theory of the Nagy-Foias operator model [NF] are polynomials in these expressions where x = T and y = T*. Complicated polynomials can often be simplified by applying "replacement rules". For example, the polynomial (1 - xy)-2 - 2xy(1-xy)-2 + xy2 (1 - xy)-2 -1 simplifies to O. This can be seen by three applications of the replacement rule (1-xy) -1 xy -t (1 - xy)-1 -1 which is true because of the definition of (1-xy)-1. A replacement rule consists of a left hand side (LHS) and a right hand side (RHS). The LHS will always be a monomial. The RHS will be a polynomial whose terms are "simpler" (in a sense to be made precise) than the LHS. An expression is reduced by repeatedly replacing any occurrence of a LHS by the corresponding RHS. The monomials will be well-ordered, so the reduction procedure will terminate after finitely many steps. Our aim is to provide a list of substitution rules for the classes of expressions above. These rules, when implemented on a computer, provide an efficient automatic simplification process. We discuss and define the ordering on monomials later
Beschreibung:1 Online-Ressource (X, 422 p)
ISBN:9783034885225
9783034896634
DOI:10.1007/978-3-0348-8522-5

Es ist kein Print-Exemplar vorhanden.

Fernleihe Bestellen Achtung: Nicht im THWS-Bestand! Volltext öffnen