Lectures on the Geometry of Poisson Manifolds:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
1994
|
Schriftenreihe: | Progress in Mathematics
118 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Everybody having even the slightest interest in analytical mechanics remembers having met there the Poisson bracket of two functions of 2n variables (pi, qi) f g ~(8f8g 8 8 ) (0.1) {f,g} = L... ~[ji - [ji~ , ;=1 p, q q p, and the fundamental role it plays in that field. In modern works, this bracket is derived from a symplectic structure, and it appears as one of the main in gredients of symplectic manifolds. In fact, it can even be taken as the defining clement of the structure (e.g., [TIl]). But, the study of some mechanical sys tems, particularly systems with symmetry groups or constraints, may lead to more general Poisson brackets. Therefore, it was natural to define a mathematical structure where the notion of a Poisson bracket would be the primary notion of the theory, and, from this viewpoint, such a theory has been developed since the early 19708, by A. Lichnerowicz, A. Weinstein, and many other authors (see the references at the end of the book). But, it has been remarked by Weinstein [We3] that, in fact, the theory can be traced back to S. Lie himself [Lie] |
Beschreibung: | 1 Online-Ressource (VII, 206 p) |
ISBN: | 9783034884952 9783034896498 |
DOI: | 10.1007/978-3-0348-8495-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422140 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s1994 |||| o||u| ||||||eng d | ||
020 | |a 9783034884952 |c Online |9 978-3-0348-8495-2 | ||
020 | |a 9783034896498 |c Print |9 978-3-0348-9649-8 | ||
024 | 7 | |a 10.1007/978-3-0348-8495-2 |2 doi | |
035 | |a (OCoLC)879624686 | ||
035 | |a (DE-599)BVBBV042422140 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516.36 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Vaisman, Izu |e Verfasser |4 aut | |
245 | 1 | 0 | |a Lectures on the Geometry of Poisson Manifolds |c by Izu Vaisman |
264 | 1 | |a Basel |b Birkhäuser Basel |c 1994 | |
300 | |a 1 Online-Ressource (VII, 206 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Mathematics |v 118 | |
500 | |a Everybody having even the slightest interest in analytical mechanics remembers having met there the Poisson bracket of two functions of 2n variables (pi, qi) f g ~(8f8g 8 8 ) (0.1) {f,g} = L... ~[ji - [ji~ , ;=1 p, q q p, and the fundamental role it plays in that field. In modern works, this bracket is derived from a symplectic structure, and it appears as one of the main in gredients of symplectic manifolds. In fact, it can even be taken as the defining clement of the structure (e.g., [TIl]). But, the study of some mechanical sys tems, particularly systems with symmetry groups or constraints, may lead to more general Poisson brackets. Therefore, it was natural to define a mathematical structure where the notion of a Poisson bracket would be the primary notion of the theory, and, from this viewpoint, such a theory has been developed since the early 19708, by A. Lichnerowicz, A. Weinstein, and many other authors (see the references at the end of the book). But, it has been remarked by Weinstein [We3] that, in fact, the theory can be traced back to S. Lie himself [Lie] | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Global differential geometry | |
650 | 4 | |a Cell aggregation / Mathematics | |
650 | 4 | |a Differential Geometry | |
650 | 4 | |a Manifolds and Cell Complexes (incl. Diff.Topology) | |
650 | 4 | |a Theoretical, Mathematical and Computational Physics | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Poisson-Mannigfaltigkeit |0 (DE-588)4231918-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Poisson-Mannigfaltigkeit |0 (DE-588)4231918-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8495-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857557 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096149925888 |
---|---|
any_adam_object | |
author | Vaisman, Izu |
author_facet | Vaisman, Izu |
author_role | aut |
author_sort | Vaisman, Izu |
author_variant | i v iv |
building | Verbundindex |
bvnumber | BV042422140 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879624686 (DE-599)BVBBV042422140 |
dewey-full | 516.36 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516.36 |
dewey-search | 516.36 |
dewey-sort | 3516.36 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8495-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02797nmm a2200493zcb4500</leader><controlfield tag="001">BV042422140</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s1994 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034884952</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8495-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034896498</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9649-8</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8495-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879624686</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422140</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516.36</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Vaisman, Izu</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Lectures on the Geometry of Poisson Manifolds</subfield><subfield code="c">by Izu Vaisman</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">1994</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 206 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">118</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Everybody having even the slightest interest in analytical mechanics remembers having met there the Poisson bracket of two functions of 2n variables (pi, qi) f g ~(8f8g 8 8 ) (0.1) {f,g} = L... ~[ji - [ji~ , ;=1 p, q q p, and the fundamental role it plays in that field. In modern works, this bracket is derived from a symplectic structure, and it appears as one of the main in gredients of symplectic manifolds. In fact, it can even be taken as the defining clement of the structure (e.g., [TIl]). But, the study of some mechanical sys tems, particularly systems with symmetry groups or constraints, may lead to more general Poisson brackets. Therefore, it was natural to define a mathematical structure where the notion of a Poisson bracket would be the primary notion of the theory, and, from this viewpoint, such a theory has been developed since the early 19708, by A. Lichnerowicz, A. Weinstein, and many other authors (see the references at the end of the book). But, it has been remarked by Weinstein [We3] that, in fact, the theory can be traced back to S. Lie himself [Lie]</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Global differential geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cell aggregation / Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Manifolds and Cell Complexes (incl. Diff.Topology)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Theoretical, Mathematical and Computational Physics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Poisson-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4231918-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Poisson-Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4231918-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8495-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857557</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422140 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034884952 9783034896498 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857557 |
oclc_num | 879624686 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VII, 206 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 1994 |
publishDateSearch | 1994 |
publishDateSort | 1994 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Progress in Mathematics |
spelling | Vaisman, Izu Verfasser aut Lectures on the Geometry of Poisson Manifolds by Izu Vaisman Basel Birkhäuser Basel 1994 1 Online-Ressource (VII, 206 p) txt rdacontent c rdamedia cr rdacarrier Progress in Mathematics 118 Everybody having even the slightest interest in analytical mechanics remembers having met there the Poisson bracket of two functions of 2n variables (pi, qi) f g ~(8f8g 8 8 ) (0.1) {f,g} = L... ~[ji - [ji~ , ;=1 p, q q p, and the fundamental role it plays in that field. In modern works, this bracket is derived from a symplectic structure, and it appears as one of the main in gredients of symplectic manifolds. In fact, it can even be taken as the defining clement of the structure (e.g., [TIl]). But, the study of some mechanical sys tems, particularly systems with symmetry groups or constraints, may lead to more general Poisson brackets. Therefore, it was natural to define a mathematical structure where the notion of a Poisson bracket would be the primary notion of the theory, and, from this viewpoint, such a theory has been developed since the early 19708, by A. Lichnerowicz, A. Weinstein, and many other authors (see the references at the end of the book). But, it has been remarked by Weinstein [We3] that, in fact, the theory can be traced back to S. Lie himself [Lie] Mathematics Global differential geometry Cell aggregation / Mathematics Differential Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Theoretical, Mathematical and Computational Physics Mathematik Poisson-Mannigfaltigkeit (DE-588)4231918-3 gnd rswk-swf Poisson-Mannigfaltigkeit (DE-588)4231918-3 s 1\p DE-604 https://doi.org/10.1007/978-3-0348-8495-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Vaisman, Izu Lectures on the Geometry of Poisson Manifolds Mathematics Global differential geometry Cell aggregation / Mathematics Differential Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Theoretical, Mathematical and Computational Physics Mathematik Poisson-Mannigfaltigkeit (DE-588)4231918-3 gnd |
subject_GND | (DE-588)4231918-3 |
title | Lectures on the Geometry of Poisson Manifolds |
title_auth | Lectures on the Geometry of Poisson Manifolds |
title_exact_search | Lectures on the Geometry of Poisson Manifolds |
title_full | Lectures on the Geometry of Poisson Manifolds by Izu Vaisman |
title_fullStr | Lectures on the Geometry of Poisson Manifolds by Izu Vaisman |
title_full_unstemmed | Lectures on the Geometry of Poisson Manifolds by Izu Vaisman |
title_short | Lectures on the Geometry of Poisson Manifolds |
title_sort | lectures on the geometry of poisson manifolds |
topic | Mathematics Global differential geometry Cell aggregation / Mathematics Differential Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Theoretical, Mathematical and Computational Physics Mathematik Poisson-Mannigfaltigkeit (DE-588)4231918-3 gnd |
topic_facet | Mathematics Global differential geometry Cell aggregation / Mathematics Differential Geometry Manifolds and Cell Complexes (incl. Diff.Topology) Theoretical, Mathematical and Computational Physics Mathematik Poisson-Mannigfaltigkeit |
url | https://doi.org/10.1007/978-3-0348-8495-2 |
work_keys_str_mv | AT vaismanizu lecturesonthegeometryofpoissonmanifolds |