Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains: Volume I
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
2000
|
Schriftenreihe: | Operator Theory, Advances and Applications
111 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | For the first time in the mathematical literature this two-volume work introduces a unified and general approach to the asymptotic analysis of elliptic boundary value problems in singularly perturbed domains. This first volume is devoted to domains whose boundary is smooth in the neighborhood of finitely many conical points. In particular, the theory encompasses the important case of domains with small holes. The second volume, on the other hand, treats perturbations of the boundary in higher dimensions as well as nonlocal perturbations. The core of this book consists of the solution of general elliptic boundary value problems by complete asymptotic expansion in powers of a small parameter that characterizes the perturbation of the domain. The construction of this method capitalizes on the theory of elliptic boundary value problems with nonsmooth boundary that has been developed in the past thirty years. Much attention is paid to concrete problems in mathematical physics, for example in elasticity theory. In particular, a study of the asymptotic behavior of stress intensity factors, energy integrals and eigenvalues is presented. To a large extent the book is based on the authors’ work and has no significant overlap with other books on the theory of elliptic boundary value problems |
Beschreibung: | 1 Online-Ressource (XXIII, 435 p) |
ISBN: | 9783034884341 9783034895651 |
DOI: | 10.1007/978-3-0348-8434-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422134 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2000 |||| o||u| ||||||eng d | ||
020 | |a 9783034884341 |c Online |9 978-3-0348-8434-1 | ||
020 | |a 9783034895651 |c Print |9 978-3-0348-9565-1 | ||
024 | 7 | |a 10.1007/978-3-0348-8434-1 |2 doi | |
035 | |a (OCoLC)863752005 | ||
035 | |a (DE-599)BVBBV042422134 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Maz’ya, Vladimir |e Verfasser |4 aut | |
245 | 1 | 0 | |a Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains |b Volume I |c by Vladimir Maz’ya, Serguei Nazarov, Boris A. Plamenevskij |
264 | 1 | |a Basel |b Birkhäuser Basel |c 2000 | |
300 | |a 1 Online-Ressource (XXIII, 435 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Operator Theory, Advances and Applications |v 111 | |
500 | |a For the first time in the mathematical literature this two-volume work introduces a unified and general approach to the asymptotic analysis of elliptic boundary value problems in singularly perturbed domains. This first volume is devoted to domains whose boundary is smooth in the neighborhood of finitely many conical points. In particular, the theory encompasses the important case of domains with small holes. The second volume, on the other hand, treats perturbations of the boundary in higher dimensions as well as nonlocal perturbations. The core of this book consists of the solution of general elliptic boundary value problems by complete asymptotic expansion in powers of a small parameter that characterizes the perturbation of the domain. The construction of this method capitalizes on the theory of elliptic boundary value problems with nonsmooth boundary that has been developed in the past thirty years. Much attention is paid to concrete problems in mathematical physics, for example in elasticity theory. In particular, a study of the asymptotic behavior of stress intensity factors, energy integrals and eigenvalues is presented. To a large extent the book is based on the authors’ work and has no significant overlap with other books on the theory of elliptic boundary value problems | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Nazarov, Serguei |e Sonstige |4 oth | |
700 | 1 | |a Plamenevskij, Boris A. |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8434-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857551 |
Datensatz im Suchindex
_version_ | 1804153096119517184 |
---|---|
any_adam_object | |
author | Maz’ya, Vladimir |
author_facet | Maz’ya, Vladimir |
author_role | aut |
author_sort | Maz’ya, Vladimir |
author_variant | v m vm |
building | Verbundindex |
bvnumber | BV042422134 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863752005 (DE-599)BVBBV042422134 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8434-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02755nmm a2200421zcb4500</leader><controlfield tag="001">BV042422134</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034884341</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8434-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034895651</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9565-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8434-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863752005</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422134</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Maz’ya, Vladimir</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains</subfield><subfield code="b">Volume I</subfield><subfield code="c">by Vladimir Maz’ya, Serguei Nazarov, Boris A. Plamenevskij</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XXIII, 435 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Operator Theory, Advances and Applications</subfield><subfield code="v">111</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">For the first time in the mathematical literature this two-volume work introduces a unified and general approach to the asymptotic analysis of elliptic boundary value problems in singularly perturbed domains. This first volume is devoted to domains whose boundary is smooth in the neighborhood of finitely many conical points. In particular, the theory encompasses the important case of domains with small holes. The second volume, on the other hand, treats perturbations of the boundary in higher dimensions as well as nonlocal perturbations. The core of this book consists of the solution of general elliptic boundary value problems by complete asymptotic expansion in powers of a small parameter that characterizes the perturbation of the domain. The construction of this method capitalizes on the theory of elliptic boundary value problems with nonsmooth boundary that has been developed in the past thirty years. Much attention is paid to concrete problems in mathematical physics, for example in elasticity theory. In particular, a study of the asymptotic behavior of stress intensity factors, energy integrals and eigenvalues is presented. To a large extent the book is based on the authors’ work and has no significant overlap with other books on the theory of elliptic boundary value problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Nazarov, Serguei</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Plamenevskij, Boris A.</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8434-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857551</subfield></datafield></record></collection> |
id | DE-604.BV042422134 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034884341 9783034895651 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857551 |
oclc_num | 863752005 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XXIII, 435 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Operator Theory, Advances and Applications |
spelling | Maz’ya, Vladimir Verfasser aut Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains Volume I by Vladimir Maz’ya, Serguei Nazarov, Boris A. Plamenevskij Basel Birkhäuser Basel 2000 1 Online-Ressource (XXIII, 435 p) txt rdacontent c rdamedia cr rdacarrier Operator Theory, Advances and Applications 111 For the first time in the mathematical literature this two-volume work introduces a unified and general approach to the asymptotic analysis of elliptic boundary value problems in singularly perturbed domains. This first volume is devoted to domains whose boundary is smooth in the neighborhood of finitely many conical points. In particular, the theory encompasses the important case of domains with small holes. The second volume, on the other hand, treats perturbations of the boundary in higher dimensions as well as nonlocal perturbations. The core of this book consists of the solution of general elliptic boundary value problems by complete asymptotic expansion in powers of a small parameter that characterizes the perturbation of the domain. The construction of this method capitalizes on the theory of elliptic boundary value problems with nonsmooth boundary that has been developed in the past thirty years. Much attention is paid to concrete problems in mathematical physics, for example in elasticity theory. In particular, a study of the asymptotic behavior of stress intensity factors, energy integrals and eigenvalues is presented. To a large extent the book is based on the authors’ work and has no significant overlap with other books on the theory of elliptic boundary value problems Mathematics Mathematics, general Mathematik Nazarov, Serguei Sonstige oth Plamenevskij, Boris A. Sonstige oth https://doi.org/10.1007/978-3-0348-8434-1 Verlag Volltext |
spellingShingle | Maz’ya, Vladimir Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains Volume I Mathematics Mathematics, general Mathematik |
title | Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains Volume I |
title_auth | Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains Volume I |
title_exact_search | Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains Volume I |
title_full | Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains Volume I by Vladimir Maz’ya, Serguei Nazarov, Boris A. Plamenevskij |
title_fullStr | Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains Volume I by Vladimir Maz’ya, Serguei Nazarov, Boris A. Plamenevskij |
title_full_unstemmed | Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains Volume I by Vladimir Maz’ya, Serguei Nazarov, Boris A. Plamenevskij |
title_short | Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains |
title_sort | asymptotic theory of elliptic boundary value problems in singularly perturbed domains volume i |
title_sub | Volume I |
topic | Mathematics Mathematics, general Mathematik |
topic_facet | Mathematics Mathematics, general Mathematik |
url | https://doi.org/10.1007/978-3-0348-8434-1 |
work_keys_str_mv | AT mazyavladimir asymptotictheoryofellipticboundaryvalueproblemsinsingularlyperturbeddomainsvolumei AT nazarovserguei asymptotictheoryofellipticboundaryvalueproblemsinsingularlyperturbeddomainsvolumei AT plamenevskijborisa asymptotictheoryofellipticboundaryvalueproblemsinsingularlyperturbeddomainsvolumei |