Infinite Length Modules:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
2000
|
Schriftenreihe: | Trends in Mathematics
|
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This volume presents the invited lectures of a conference devoted to Infinite Length Modules, held at Bielefeld, September 7-11, 1998. Some additional surveys have been included in order to establish a unified picture. The scientific organization of the conference was in the hands of K. Brown (Glasgow), P. M. Cohn (London), I. Reiten (Trondheim) and C. M. Ringel (Bielefeld). The conference was concerned with the role played by modules of infinite length when dealing with problems in the representation theory of algebras. The investi gation of such modules always relies on information concerning modules of finite length, for example simple modules and their possible extensions. But the converse is also true: recent developments in representation theory indicate that a full un derstanding of the category of finite dimensional modules, even over a finite dimen sional algebra, requires consideration of infinite dimensional, thus infinite length, modules. For instance, the important notion of tameness uses one-parameter fami lies of modules, or, alternatively, generic modules and they are of infinite length. If one tries to exhibit a presentation of a module category, it turns out to be essential to take into account the indecomposable modules which are algebraically compact, or, equivalently, pure injective. Specific methods have been developed over the last few years dealing with such special situations as group algebras of finite groups or noetherian rings, and there are surprising relations to topology and geometry. The conference outlined the present state of the art |
Beschreibung: | 1 Online-Ressource (IX, 439 p) |
ISBN: | 9783034884266 9783034895620 |
DOI: | 10.1007/978-3-0348-8426-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zc 4500 | ||
---|---|---|---|
001 | BV042422131 | ||
003 | DE-604 | ||
005 | 20190904 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2000 |||| o||u| ||||||eng d | ||
020 | |a 9783034884266 |c Online |9 978-3-0348-8426-6 | ||
020 | |a 9783034895620 |c Print |9 978-3-0348-9562-0 | ||
024 | 7 | |a 10.1007/978-3-0348-8426-6 |2 doi | |
035 | |a (OCoLC)863710741 | ||
035 | |a (DE-599)BVBBV042422131 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Krause, Henning |d 1962- |e Verfasser |0 (DE-588)1126055913 |4 aut | |
245 | 1 | 0 | |a Infinite Length Modules |c edited by Henning Krause, Claus Michael Ringel |
264 | 1 | |a Basel |b Birkhäuser Basel |c 2000 | |
300 | |a 1 Online-Ressource (IX, 439 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Trends in Mathematics | |
500 | |a This volume presents the invited lectures of a conference devoted to Infinite Length Modules, held at Bielefeld, September 7-11, 1998. Some additional surveys have been included in order to establish a unified picture. The scientific organization of the conference was in the hands of K. Brown (Glasgow), P. M. Cohn (London), I. Reiten (Trondheim) and C. M. Ringel (Bielefeld). The conference was concerned with the role played by modules of infinite length when dealing with problems in the representation theory of algebras. The investi gation of such modules always relies on information concerning modules of finite length, for example simple modules and their possible extensions. But the converse is also true: recent developments in representation theory indicate that a full un derstanding of the category of finite dimensional modules, even over a finite dimen sional algebra, requires consideration of infinite dimensional, thus infinite length, modules. For instance, the important notion of tameness uses one-parameter fami lies of modules, or, alternatively, generic modules and they are of infinite length. If one tries to exhibit a presentation of a module category, it turns out to be essential to take into account the indecomposable modules which are algebraically compact, or, equivalently, pure injective. Specific methods have been developed over the last few years dealing with such special situations as group algebras of finite groups or noetherian rings, and there are surprising relations to topology and geometry. The conference outlined the present state of the art | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Ringel, Claus Michael |d 1945- |e Sonstige |0 (DE-588)110608526 |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8426-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857548 |
Datensatz im Suchindex
_version_ | 1804153096133148672 |
---|---|
any_adam_object | |
author | Krause, Henning 1962- |
author_GND | (DE-588)1126055913 (DE-588)110608526 |
author_facet | Krause, Henning 1962- |
author_role | aut |
author_sort | Krause, Henning 1962- |
author_variant | h k hk |
building | Verbundindex |
bvnumber | BV042422131 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863710741 (DE-599)BVBBV042422131 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8426-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02939nmm a2200409zc 4500</leader><controlfield tag="001">BV042422131</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20190904 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2000 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034884266</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8426-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034895620</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9562-0</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8426-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863710741</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422131</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Krause, Henning</subfield><subfield code="d">1962-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)1126055913</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Infinite Length Modules</subfield><subfield code="c">edited by Henning Krause, Claus Michael Ringel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">2000</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 439 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Trends in Mathematics</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This volume presents the invited lectures of a conference devoted to Infinite Length Modules, held at Bielefeld, September 7-11, 1998. Some additional surveys have been included in order to establish a unified picture. The scientific organization of the conference was in the hands of K. Brown (Glasgow), P. M. Cohn (London), I. Reiten (Trondheim) and C. M. Ringel (Bielefeld). The conference was concerned with the role played by modules of infinite length when dealing with problems in the representation theory of algebras. The investi gation of such modules always relies on information concerning modules of finite length, for example simple modules and their possible extensions. But the converse is also true: recent developments in representation theory indicate that a full un derstanding of the category of finite dimensional modules, even over a finite dimen sional algebra, requires consideration of infinite dimensional, thus infinite length, modules. For instance, the important notion of tameness uses one-parameter fami lies of modules, or, alternatively, generic modules and they are of infinite length. If one tries to exhibit a presentation of a module category, it turns out to be essential to take into account the indecomposable modules which are algebraically compact, or, equivalently, pure injective. Specific methods have been developed over the last few years dealing with such special situations as group algebras of finite groups or noetherian rings, and there are surprising relations to topology and geometry. The conference outlined the present state of the art</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ringel, Claus Michael</subfield><subfield code="d">1945-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)110608526</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8426-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857548</subfield></datafield></record></collection> |
id | DE-604.BV042422131 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034884266 9783034895620 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857548 |
oclc_num | 863710741 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (IX, 439 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2000 |
publishDateSearch | 2000 |
publishDateSort | 2000 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Trends in Mathematics |
spelling | Krause, Henning 1962- Verfasser (DE-588)1126055913 aut Infinite Length Modules edited by Henning Krause, Claus Michael Ringel Basel Birkhäuser Basel 2000 1 Online-Ressource (IX, 439 p) txt rdacontent c rdamedia cr rdacarrier Trends in Mathematics This volume presents the invited lectures of a conference devoted to Infinite Length Modules, held at Bielefeld, September 7-11, 1998. Some additional surveys have been included in order to establish a unified picture. The scientific organization of the conference was in the hands of K. Brown (Glasgow), P. M. Cohn (London), I. Reiten (Trondheim) and C. M. Ringel (Bielefeld). The conference was concerned with the role played by modules of infinite length when dealing with problems in the representation theory of algebras. The investi gation of such modules always relies on information concerning modules of finite length, for example simple modules and their possible extensions. But the converse is also true: recent developments in representation theory indicate that a full un derstanding of the category of finite dimensional modules, even over a finite dimen sional algebra, requires consideration of infinite dimensional, thus infinite length, modules. For instance, the important notion of tameness uses one-parameter fami lies of modules, or, alternatively, generic modules and they are of infinite length. If one tries to exhibit a presentation of a module category, it turns out to be essential to take into account the indecomposable modules which are algebraically compact, or, equivalently, pure injective. Specific methods have been developed over the last few years dealing with such special situations as group algebras of finite groups or noetherian rings, and there are surprising relations to topology and geometry. The conference outlined the present state of the art Mathematics Mathematics, general Mathematik Ringel, Claus Michael 1945- Sonstige (DE-588)110608526 oth https://doi.org/10.1007/978-3-0348-8426-6 Verlag Volltext |
spellingShingle | Krause, Henning 1962- Infinite Length Modules Mathematics Mathematics, general Mathematik |
title | Infinite Length Modules |
title_auth | Infinite Length Modules |
title_exact_search | Infinite Length Modules |
title_full | Infinite Length Modules edited by Henning Krause, Claus Michael Ringel |
title_fullStr | Infinite Length Modules edited by Henning Krause, Claus Michael Ringel |
title_full_unstemmed | Infinite Length Modules edited by Henning Krause, Claus Michael Ringel |
title_short | Infinite Length Modules |
title_sort | infinite length modules |
topic | Mathematics Mathematics, general Mathematik |
topic_facet | Mathematics Mathematics, general Mathematik |
url | https://doi.org/10.1007/978-3-0348-8426-6 |
work_keys_str_mv | AT krausehenning infinitelengthmodules AT ringelclausmichael infinitelengthmodules |