Hyperbolic Problems: Theory, Numerics, Applications: Eighth International Conference in Magdeburg, February/March 2000 Volume II
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
2001
|
Schriftenreihe: | ISNM International Series of Numerical Mathematics
141 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Hyperbolic partial differential equations describe phenomena of material or wave transport in physics, biology and engineering, especially in the field of fluid mechanics. The mathematical theory of hyperbolic equations has recently made considerable progress. Accurate and efficient numerical schemes for computation have been and are being further developed. This two-volume set of conference proceedings contains about 100 refereed and carefully selected papers. The books are intended for researchers and graduate students in mathematics, science and engineering interested in the most recent results in theory and practice of hyperbolic problems. Applications touched in these proceedings concern one-phase and multiphase fluid flow, phase transitions, shallow water dynamics, elasticity, extended thermodynamics, electromagnetism, classical and relativistic magnetohydrodynamics, cosmology. Contributions to the abstract theory of hyperbolic systems deal with viscous and relaxation approximations, front tracking and wellposedness, stability of shock profiles and multi-shock patterns, traveling fronts for transport equations. Numerically oriented articles study finite difference, finite volume, and finite element schemes, adaptive, multiresolution, and artificial dissipation methods |
Beschreibung: | 1 Online-Ressource (XII, 472 p) |
ISBN: | 9783034883726 9783034895385 |
DOI: | 10.1007/978-3-0348-8372-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422112 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9783034883726 |c Online |9 978-3-0348-8372-6 | ||
020 | |a 9783034895385 |c Print |9 978-3-0348-9538-5 | ||
024 | 7 | |a 10.1007/978-3-0348-8372-6 |2 doi | |
035 | |a (OCoLC)863683787 | ||
035 | |a (DE-599)BVBBV042422112 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 515.353 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Freistühler, Heinrich |e Verfasser |4 aut | |
245 | 1 | 0 | |a Hyperbolic Problems: Theory, Numerics, Applications |b Eighth International Conference in Magdeburg, February/March 2000 Volume II |c edited by Heinrich Freistühler, Gerald Warnecke |
264 | 1 | |a Basel |b Birkhäuser Basel |c 2001 | |
300 | |a 1 Online-Ressource (XII, 472 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a ISNM International Series of Numerical Mathematics |v 141 | |
500 | |a Hyperbolic partial differential equations describe phenomena of material or wave transport in physics, biology and engineering, especially in the field of fluid mechanics. The mathematical theory of hyperbolic equations has recently made considerable progress. Accurate and efficient numerical schemes for computation have been and are being further developed. This two-volume set of conference proceedings contains about 100 refereed and carefully selected papers. The books are intended for researchers and graduate students in mathematics, science and engineering interested in the most recent results in theory and practice of hyperbolic problems. Applications touched in these proceedings concern one-phase and multiphase fluid flow, phase transitions, shallow water dynamics, elasticity, extended thermodynamics, electromagnetism, classical and relativistic magnetohydrodynamics, cosmology. Contributions to the abstract theory of hyperbolic systems deal with viscous and relaxation approximations, front tracking and wellposedness, stability of shock profiles and multi-shock patterns, traveling fronts for transport equations. Numerically oriented articles study finite difference, finite volume, and finite element schemes, adaptive, multiresolution, and artificial dissipation methods | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Differential equations, partial | |
650 | 4 | |a Partial Differential Equations | |
650 | 4 | |a Mathematik | |
700 | 1 | |a Warnecke, Gerald |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8372-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857529 |
Datensatz im Suchindex
_version_ | 1804153096078622720 |
---|---|
any_adam_object | |
author | Freistühler, Heinrich |
author_facet | Freistühler, Heinrich |
author_role | aut |
author_sort | Freistühler, Heinrich |
author_variant | h f hf |
building | Verbundindex |
bvnumber | BV042422112 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863683787 (DE-599)BVBBV042422112 |
dewey-full | 515.353 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 515 - Analysis |
dewey-raw | 515.353 |
dewey-search | 515.353 |
dewey-sort | 3515.353 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8372-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02785nmm a2200421zcb4500</leader><controlfield tag="001">BV042422112</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034883726</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8372-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034895385</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9538-5</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8372-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863683787</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422112</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">515.353</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Freistühler, Heinrich</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hyperbolic Problems: Theory, Numerics, Applications</subfield><subfield code="b">Eighth International Conference in Magdeburg, February/March 2000 Volume II</subfield><subfield code="c">edited by Heinrich Freistühler, Gerald Warnecke</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 472 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">ISNM International Series of Numerical Mathematics</subfield><subfield code="v">141</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Hyperbolic partial differential equations describe phenomena of material or wave transport in physics, biology and engineering, especially in the field of fluid mechanics. The mathematical theory of hyperbolic equations has recently made considerable progress. Accurate and efficient numerical schemes for computation have been and are being further developed. This two-volume set of conference proceedings contains about 100 refereed and carefully selected papers. The books are intended for researchers and graduate students in mathematics, science and engineering interested in the most recent results in theory and practice of hyperbolic problems. Applications touched in these proceedings concern one-phase and multiphase fluid flow, phase transitions, shallow water dynamics, elasticity, extended thermodynamics, electromagnetism, classical and relativistic magnetohydrodynamics, cosmology. Contributions to the abstract theory of hyperbolic systems deal with viscous and relaxation approximations, front tracking and wellposedness, stability of shock profiles and multi-shock patterns, traveling fronts for transport equations. Numerically oriented articles study finite difference, finite volume, and finite element schemes, adaptive, multiresolution, and artificial dissipation methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Differential equations, partial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Partial Differential Equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Warnecke, Gerald</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8372-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857529</subfield></datafield></record></collection> |
id | DE-604.BV042422112 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034883726 9783034895385 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857529 |
oclc_num | 863683787 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 472 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | ISNM International Series of Numerical Mathematics |
spelling | Freistühler, Heinrich Verfasser aut Hyperbolic Problems: Theory, Numerics, Applications Eighth International Conference in Magdeburg, February/March 2000 Volume II edited by Heinrich Freistühler, Gerald Warnecke Basel Birkhäuser Basel 2001 1 Online-Ressource (XII, 472 p) txt rdacontent c rdamedia cr rdacarrier ISNM International Series of Numerical Mathematics 141 Hyperbolic partial differential equations describe phenomena of material or wave transport in physics, biology and engineering, especially in the field of fluid mechanics. The mathematical theory of hyperbolic equations has recently made considerable progress. Accurate and efficient numerical schemes for computation have been and are being further developed. This two-volume set of conference proceedings contains about 100 refereed and carefully selected papers. The books are intended for researchers and graduate students in mathematics, science and engineering interested in the most recent results in theory and practice of hyperbolic problems. Applications touched in these proceedings concern one-phase and multiphase fluid flow, phase transitions, shallow water dynamics, elasticity, extended thermodynamics, electromagnetism, classical and relativistic magnetohydrodynamics, cosmology. Contributions to the abstract theory of hyperbolic systems deal with viscous and relaxation approximations, front tracking and wellposedness, stability of shock profiles and multi-shock patterns, traveling fronts for transport equations. Numerically oriented articles study finite difference, finite volume, and finite element schemes, adaptive, multiresolution, and artificial dissipation methods Mathematics Differential equations, partial Partial Differential Equations Mathematik Warnecke, Gerald Sonstige oth https://doi.org/10.1007/978-3-0348-8372-6 Verlag Volltext |
spellingShingle | Freistühler, Heinrich Hyperbolic Problems: Theory, Numerics, Applications Eighth International Conference in Magdeburg, February/March 2000 Volume II Mathematics Differential equations, partial Partial Differential Equations Mathematik |
title | Hyperbolic Problems: Theory, Numerics, Applications Eighth International Conference in Magdeburg, February/March 2000 Volume II |
title_auth | Hyperbolic Problems: Theory, Numerics, Applications Eighth International Conference in Magdeburg, February/March 2000 Volume II |
title_exact_search | Hyperbolic Problems: Theory, Numerics, Applications Eighth International Conference in Magdeburg, February/March 2000 Volume II |
title_full | Hyperbolic Problems: Theory, Numerics, Applications Eighth International Conference in Magdeburg, February/March 2000 Volume II edited by Heinrich Freistühler, Gerald Warnecke |
title_fullStr | Hyperbolic Problems: Theory, Numerics, Applications Eighth International Conference in Magdeburg, February/March 2000 Volume II edited by Heinrich Freistühler, Gerald Warnecke |
title_full_unstemmed | Hyperbolic Problems: Theory, Numerics, Applications Eighth International Conference in Magdeburg, February/March 2000 Volume II edited by Heinrich Freistühler, Gerald Warnecke |
title_short | Hyperbolic Problems: Theory, Numerics, Applications |
title_sort | hyperbolic problems theory numerics applications eighth international conference in magdeburg february march 2000 volume ii |
title_sub | Eighth International Conference in Magdeburg, February/March 2000 Volume II |
topic | Mathematics Differential equations, partial Partial Differential Equations Mathematik |
topic_facet | Mathematics Differential equations, partial Partial Differential Equations Mathematik |
url | https://doi.org/10.1007/978-3-0348-8372-6 |
work_keys_str_mv | AT freistuhlerheinrich hyperbolicproblemstheorynumericsapplicationseighthinternationalconferenceinmagdeburgfebruarymarch2000volumeii AT warneckegerald hyperbolicproblemstheorynumericsapplicationseighthinternationalconferenceinmagdeburgfebruarymarch2000volumeii |