Quantization of Singular Symplectic Quotients:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
2001
|
Schriftenreihe: | Progress in Mathematics
198 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | The purpose of this volume is to present new techniques and ideas that have a di rect significance for the description of stratified (symplectic) spaces and their quan tization. The book grew out of a Research-in-Pairs Workshop held at Oberwolfach from 2-6 August, 1999, organized by the editors with Martin Bordemann. They are grateful to the Volkswagen-Stiftung and to the Mathematisches Forschungszen trum Oberwolfach, particularly to its director, Matthias Kreck, for financial and other support. The papers by Cattaneo and Felder, Huebschmann, Landsman, Pflaum, Schli chenmaier, Schomerus, Schroers, and Sengupta are based on talks given at the workshop. To obtain a more complete picture of the field, the editors invited a number of outside contributions as well. Thus they are happy to include the papers by Benameur and Nistor, Braverman, Fedosov, and Lauter and Nistor. All papers were refereed. The opening article by Marsden and Weinstein provides a historical and personal overview of the subject. In the bulk of the book the reader may identify two fundamentally different approaches. The first associates a commutative algebra of functions to a singular space, preferably also equipped with a Poisson bracket, which one may subse quently try to quantize. This generically involves techniques from algebraic and differential geometry. Here the papers by Braverman, Cattaneo and Felder, Pflaum, and Schlichenmaier are of a general nature, whereas Huebschmann, Schomerus, Schroers, and Sengupta are specifically concerned with the moduli spaces M. (Cf |
Beschreibung: | 1 Online-Ressource (XII, 355 p) |
ISBN: | 9783034883641 9783034895354 |
DOI: | 10.1007/978-3-0348-8364-1 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422108 | ||
003 | DE-604 | ||
005 | 20160621 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9783034883641 |c Online |9 978-3-0348-8364-1 | ||
020 | |a 9783034895354 |c Print |9 978-3-0348-9535-4 | ||
024 | 7 | |a 10.1007/978-3-0348-8364-1 |2 doi | |
035 | |a (OCoLC)1184321213 | ||
035 | |a (DE-599)BVBBV042422108 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Landsman, N. P. |d 1963- |e Verfasser |0 (DE-588)172216699 |4 aut | |
245 | 1 | 0 | |a Quantization of Singular Symplectic Quotients |c edited by N. P. Landsman, M. Pflaum, M. Schlichenmaier |
264 | 1 | |a Basel |b Birkhäuser Basel |c 2001 | |
300 | |a 1 Online-Ressource (XII, 355 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Mathematics |v 198 | |
500 | |a The purpose of this volume is to present new techniques and ideas that have a di rect significance for the description of stratified (symplectic) spaces and their quan tization. The book grew out of a Research-in-Pairs Workshop held at Oberwolfach from 2-6 August, 1999, organized by the editors with Martin Bordemann. They are grateful to the Volkswagen-Stiftung and to the Mathematisches Forschungszen trum Oberwolfach, particularly to its director, Matthias Kreck, for financial and other support. The papers by Cattaneo and Felder, Huebschmann, Landsman, Pflaum, Schli chenmaier, Schomerus, Schroers, and Sengupta are based on talks given at the workshop. To obtain a more complete picture of the field, the editors invited a number of outside contributions as well. Thus they are happy to include the papers by Benameur and Nistor, Braverman, Fedosov, and Lauter and Nistor. All papers were refereed. The opening article by Marsden and Weinstein provides a historical and personal overview of the subject. In the bulk of the book the reader may identify two fundamentally different approaches. The first associates a commutative algebra of functions to a singular space, preferably also equipped with a Poisson bracket, which one may subse quently try to quantize. This generically involves techniques from algebraic and differential geometry. Here the papers by Braverman, Cattaneo and Felder, Pflaum, and Schlichenmaier are of a general nature, whereas Huebschmann, Schomerus, Schroers, and Sengupta are specifically concerned with the moduli spaces M. (Cf | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Geometrische Quantisierung |0 (DE-588)4156720-1 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Symplektische Mannigfaltigkeit |0 (DE-588)4290704-4 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)1071861417 |a Konferenzschrift |y 1999 |z Oberwolfach |2 gnd-content | |
689 | 0 | 0 | |a Symplektische Mannigfaltigkeit |0 (DE-588)4290704-4 |D s |
689 | 0 | 1 | |a Geometrische Quantisierung |0 (DE-588)4156720-1 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Pflaum, Markus J. |d 1965- |e Sonstige |0 (DE-588)123140536 |4 oth | |
700 | 1 | |a Schlichenmaier, Martin |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8364-1 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857525 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096068136960 |
---|---|
any_adam_object | |
author | Landsman, N. P. 1963- |
author_GND | (DE-588)172216699 (DE-588)123140536 |
author_facet | Landsman, N. P. 1963- |
author_role | aut |
author_sort | Landsman, N. P. 1963- |
author_variant | n p l np npl |
building | Verbundindex |
bvnumber | BV042422108 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184321213 (DE-599)BVBBV042422108 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8364-1 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03581nmm a2200517zcb4500</leader><controlfield tag="001">BV042422108</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20160621 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034883641</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8364-1</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034895354</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9535-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8364-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184321213</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422108</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Landsman, N. P.</subfield><subfield code="d">1963-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)172216699</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantization of Singular Symplectic Quotients</subfield><subfield code="c">edited by N. P. Landsman, M. Pflaum, M. Schlichenmaier</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 355 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">198</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">The purpose of this volume is to present new techniques and ideas that have a di rect significance for the description of stratified (symplectic) spaces and their quan tization. The book grew out of a Research-in-Pairs Workshop held at Oberwolfach from 2-6 August, 1999, organized by the editors with Martin Bordemann. They are grateful to the Volkswagen-Stiftung and to the Mathematisches Forschungszen trum Oberwolfach, particularly to its director, Matthias Kreck, for financial and other support. The papers by Cattaneo and Felder, Huebschmann, Landsman, Pflaum, Schli chenmaier, Schomerus, Schroers, and Sengupta are based on talks given at the workshop. To obtain a more complete picture of the field, the editors invited a number of outside contributions as well. Thus they are happy to include the papers by Benameur and Nistor, Braverman, Fedosov, and Lauter and Nistor. All papers were refereed. The opening article by Marsden and Weinstein provides a historical and personal overview of the subject. In the bulk of the book the reader may identify two fundamentally different approaches. The first associates a commutative algebra of functions to a singular space, preferably also equipped with a Poisson bracket, which one may subse quently try to quantize. This generically involves techniques from algebraic and differential geometry. Here the papers by Braverman, Cattaneo and Felder, Pflaum, and Schlichenmaier are of a general nature, whereas Huebschmann, Schomerus, Schroers, and Sengupta are specifically concerned with the moduli spaces M. (Cf</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Geometrische Quantisierung</subfield><subfield code="0">(DE-588)4156720-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Symplektische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4290704-4</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)1071861417</subfield><subfield code="a">Konferenzschrift</subfield><subfield code="y">1999</subfield><subfield code="z">Oberwolfach</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Symplektische Mannigfaltigkeit</subfield><subfield code="0">(DE-588)4290704-4</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Geometrische Quantisierung</subfield><subfield code="0">(DE-588)4156720-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pflaum, Markus J.</subfield><subfield code="d">1965-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)123140536</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Schlichenmaier, Martin</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8364-1</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857525</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)1071861417 Konferenzschrift 1999 Oberwolfach gnd-content |
genre_facet | Konferenzschrift 1999 Oberwolfach |
id | DE-604.BV042422108 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034883641 9783034895354 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857525 |
oclc_num | 1184321213 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 355 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Progress in Mathematics |
spelling | Landsman, N. P. 1963- Verfasser (DE-588)172216699 aut Quantization of Singular Symplectic Quotients edited by N. P. Landsman, M. Pflaum, M. Schlichenmaier Basel Birkhäuser Basel 2001 1 Online-Ressource (XII, 355 p) txt rdacontent c rdamedia cr rdacarrier Progress in Mathematics 198 The purpose of this volume is to present new techniques and ideas that have a di rect significance for the description of stratified (symplectic) spaces and their quan tization. The book grew out of a Research-in-Pairs Workshop held at Oberwolfach from 2-6 August, 1999, organized by the editors with Martin Bordemann. They are grateful to the Volkswagen-Stiftung and to the Mathematisches Forschungszen trum Oberwolfach, particularly to its director, Matthias Kreck, for financial and other support. The papers by Cattaneo and Felder, Huebschmann, Landsman, Pflaum, Schli chenmaier, Schomerus, Schroers, and Sengupta are based on talks given at the workshop. To obtain a more complete picture of the field, the editors invited a number of outside contributions as well. Thus they are happy to include the papers by Benameur and Nistor, Braverman, Fedosov, and Lauter and Nistor. All papers were refereed. The opening article by Marsden and Weinstein provides a historical and personal overview of the subject. In the bulk of the book the reader may identify two fundamentally different approaches. The first associates a commutative algebra of functions to a singular space, preferably also equipped with a Poisson bracket, which one may subse quently try to quantize. This generically involves techniques from algebraic and differential geometry. Here the papers by Braverman, Cattaneo and Felder, Pflaum, and Schlichenmaier are of a general nature, whereas Huebschmann, Schomerus, Schroers, and Sengupta are specifically concerned with the moduli spaces M. (Cf Mathematics Mathematics, general Mathematik Geometrische Quantisierung (DE-588)4156720-1 gnd rswk-swf Symplektische Mannigfaltigkeit (DE-588)4290704-4 gnd rswk-swf 1\p (DE-588)1071861417 Konferenzschrift 1999 Oberwolfach gnd-content Symplektische Mannigfaltigkeit (DE-588)4290704-4 s Geometrische Quantisierung (DE-588)4156720-1 s 2\p DE-604 Pflaum, Markus J. 1965- Sonstige (DE-588)123140536 oth Schlichenmaier, Martin Sonstige oth https://doi.org/10.1007/978-3-0348-8364-1 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Landsman, N. P. 1963- Quantization of Singular Symplectic Quotients Mathematics Mathematics, general Mathematik Geometrische Quantisierung (DE-588)4156720-1 gnd Symplektische Mannigfaltigkeit (DE-588)4290704-4 gnd |
subject_GND | (DE-588)4156720-1 (DE-588)4290704-4 (DE-588)1071861417 |
title | Quantization of Singular Symplectic Quotients |
title_auth | Quantization of Singular Symplectic Quotients |
title_exact_search | Quantization of Singular Symplectic Quotients |
title_full | Quantization of Singular Symplectic Quotients edited by N. P. Landsman, M. Pflaum, M. Schlichenmaier |
title_fullStr | Quantization of Singular Symplectic Quotients edited by N. P. Landsman, M. Pflaum, M. Schlichenmaier |
title_full_unstemmed | Quantization of Singular Symplectic Quotients edited by N. P. Landsman, M. Pflaum, M. Schlichenmaier |
title_short | Quantization of Singular Symplectic Quotients |
title_sort | quantization of singular symplectic quotients |
topic | Mathematics Mathematics, general Mathematik Geometrische Quantisierung (DE-588)4156720-1 gnd Symplektische Mannigfaltigkeit (DE-588)4290704-4 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Geometrische Quantisierung Symplektische Mannigfaltigkeit Konferenzschrift 1999 Oberwolfach |
url | https://doi.org/10.1007/978-3-0348-8364-1 |
work_keys_str_mv | AT landsmannp quantizationofsingularsymplecticquotients AT pflaummarkusj quantizationofsingularsymplecticquotients AT schlichenmaiermartin quantizationofsingularsymplecticquotients |