Homology of Linear Groups:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
2001
|
Schriftenreihe: | Progress in Mathematics
193 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Daniel Quillen's definition of the higher algebraic K-groups of a ring emphasized the importance of computing the homology of groups of matrices. This text traces the development of this theory from Quillen's fundamental calculation of the cohomology of GLn (Fq). The stability theorems and low-dimensional results of A. Suslin, W. van der Kallen and others are presented as well as recent results for rank one groups. A chapter on the Friedlander-Milnor-conjecture concerning the homology of algebraic groups made discrete is also included. This marks the first time that these results have been collected in a single volume. The book should prove useful to graduate students and researchers in K-theory, group cohomology, algebraic geometry and topology |
Beschreibung: | 1 Online-Ressource (XI, 192 p) |
ISBN: | 9783034883382 9783034895231 |
DOI: | 10.1007/978-3-0348-8338-2 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422103 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9783034883382 |c Online |9 978-3-0348-8338-2 | ||
020 | |a 9783034895231 |c Print |9 978-3-0348-9523-1 | ||
024 | 7 | |a 10.1007/978-3-0348-8338-2 |2 doi | |
035 | |a (OCoLC)1184398456 | ||
035 | |a (DE-599)BVBBV042422103 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 514.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Knudson, Kevin P. |e Verfasser |4 aut | |
245 | 1 | 0 | |a Homology of Linear Groups |c by Kevin P. Knudson |
264 | 1 | |a Basel |b Birkhäuser Basel |c 2001 | |
300 | |a 1 Online-Ressource (XI, 192 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Mathematics |v 193 | |
500 | |a Daniel Quillen's definition of the higher algebraic K-groups of a ring emphasized the importance of computing the homology of groups of matrices. This text traces the development of this theory from Quillen's fundamental calculation of the cohomology of GLn (Fq). The stability theorems and low-dimensional results of A. Suslin, W. van der Kallen and others are presented as well as recent results for rank one groups. A chapter on the Friedlander-Milnor-conjecture concerning the homology of algebraic groups made discrete is also included. This marks the first time that these results have been collected in a single volume. The book should prove useful to graduate students and researchers in K-theory, group cohomology, algebraic geometry and topology | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Algebraic topology | |
650 | 4 | |a Algebraic Topology | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Homologietheorie |0 (DE-588)4141714-8 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Lineare algebraische Gruppe |0 (DE-588)4295326-1 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Lineare algebraische Gruppe |0 (DE-588)4295326-1 |D s |
689 | 0 | 1 | |a Homologietheorie |0 (DE-588)4141714-8 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8338-2 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857520 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096048214016 |
---|---|
any_adam_object | |
author | Knudson, Kevin P. |
author_facet | Knudson, Kevin P. |
author_role | aut |
author_sort | Knudson, Kevin P. |
author_variant | k p k kp kpk |
building | Verbundindex |
bvnumber | BV042422103 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184398456 (DE-599)BVBBV042422103 |
dewey-full | 514.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 514 - Topology |
dewey-raw | 514.2 |
dewey-search | 514.2 |
dewey-sort | 3514.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8338-2 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02387nmm a2200481zcb4500</leader><controlfield tag="001">BV042422103</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034883382</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8338-2</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034895231</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9523-1</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8338-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184398456</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422103</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">514.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Knudson, Kevin P.</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Homology of Linear Groups</subfield><subfield code="c">by Kevin P. Knudson</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XI, 192 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">193</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Daniel Quillen's definition of the higher algebraic K-groups of a ring emphasized the importance of computing the homology of groups of matrices. This text traces the development of this theory from Quillen's fundamental calculation of the cohomology of GLn (Fq). The stability theorems and low-dimensional results of A. Suslin, W. van der Kallen and others are presented as well as recent results for rank one groups. A chapter on the Friedlander-Milnor-conjecture concerning the homology of algebraic groups made discrete is also included. This marks the first time that these results have been collected in a single volume. The book should prove useful to graduate students and researchers in K-theory, group cohomology, algebraic geometry and topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic Topology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Homologietheorie</subfield><subfield code="0">(DE-588)4141714-8</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Lineare algebraische Gruppe</subfield><subfield code="0">(DE-588)4295326-1</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Lineare algebraische Gruppe</subfield><subfield code="0">(DE-588)4295326-1</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Homologietheorie</subfield><subfield code="0">(DE-588)4141714-8</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8338-2</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857520</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422103 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034883382 9783034895231 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857520 |
oclc_num | 1184398456 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XI, 192 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Progress in Mathematics |
spelling | Knudson, Kevin P. Verfasser aut Homology of Linear Groups by Kevin P. Knudson Basel Birkhäuser Basel 2001 1 Online-Ressource (XI, 192 p) txt rdacontent c rdamedia cr rdacarrier Progress in Mathematics 193 Daniel Quillen's definition of the higher algebraic K-groups of a ring emphasized the importance of computing the homology of groups of matrices. This text traces the development of this theory from Quillen's fundamental calculation of the cohomology of GLn (Fq). The stability theorems and low-dimensional results of A. Suslin, W. van der Kallen and others are presented as well as recent results for rank one groups. A chapter on the Friedlander-Milnor-conjecture concerning the homology of algebraic groups made discrete is also included. This marks the first time that these results have been collected in a single volume. The book should prove useful to graduate students and researchers in K-theory, group cohomology, algebraic geometry and topology Mathematics Algebraic topology Algebraic Topology Mathematik Homologietheorie (DE-588)4141714-8 gnd rswk-swf Lineare algebraische Gruppe (DE-588)4295326-1 gnd rswk-swf Lineare algebraische Gruppe (DE-588)4295326-1 s Homologietheorie (DE-588)4141714-8 s 1\p DE-604 https://doi.org/10.1007/978-3-0348-8338-2 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Knudson, Kevin P. Homology of Linear Groups Mathematics Algebraic topology Algebraic Topology Mathematik Homologietheorie (DE-588)4141714-8 gnd Lineare algebraische Gruppe (DE-588)4295326-1 gnd |
subject_GND | (DE-588)4141714-8 (DE-588)4295326-1 |
title | Homology of Linear Groups |
title_auth | Homology of Linear Groups |
title_exact_search | Homology of Linear Groups |
title_full | Homology of Linear Groups by Kevin P. Knudson |
title_fullStr | Homology of Linear Groups by Kevin P. Knudson |
title_full_unstemmed | Homology of Linear Groups by Kevin P. Knudson |
title_short | Homology of Linear Groups |
title_sort | homology of linear groups |
topic | Mathematics Algebraic topology Algebraic Topology Mathematik Homologietheorie (DE-588)4141714-8 gnd Lineare algebraische Gruppe (DE-588)4295326-1 gnd |
topic_facet | Mathematics Algebraic topology Algebraic Topology Mathematik Homologietheorie Lineare algebraische Gruppe |
url | https://doi.org/10.1007/978-3-0348-8338-2 |
work_keys_str_mv | AT knudsonkevinp homologyoflineargroups |