De Rham Cohomology of Differential Modules on Algebraic Varieties:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
2001
|
Schriftenreihe: | Progress in Mathematics
189 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This is a study of algebraic differential modules in several variables, and of some of their relations with analytic differential modules. Let us explain its source. The idea of computing the cohomology of a manifold, in particular its Betti numbers, by means of differential forms goes back to E. Cartan and G. De Rham. In the case of a smooth complex algebraic variety X, there are three variants: i) using the De Rham complex of algebraic differential forms on X, ii) using the De Rham complex of holomorphic differential forms on the analytic an manifold X underlying X, iii) using the De Rham complex of Coo complex differential forms on the differ entiable manifold Xdlf underlying Xan. These variants tum out to be equivalent. Namely, one has canonical isomorphisms of hypercohomology: While the second isomorphism is a simple sheaf-theoretic consequence of the Poincare lemma, which identifies both vector spaces with the complex cohomology H (XtoP, C) of the topological space underlying X, the first isomorphism is a deeper result of A. Grothendieck, which shows in particular that the Betti numbers can be computed algebraically. This result has been generalized by P. Deligne to the case of nonconstant coeffi cients: for any algebraic vector bundle .M on X endowed with an integrable regular connection, one has canonical isomorphisms The notion of regular connection is a higher dimensional generalization of the classical notion of fuchsian differential equations (only regular singularities) |
Beschreibung: | 1 Online-Ressource (VII, 214 p) |
ISBN: | 9783034883368 9783034895224 |
DOI: | 10.1007/978-3-0348-8336-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422102 | ||
003 | DE-604 | ||
005 | 20151110 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9783034883368 |c Online |9 978-3-0348-8336-8 | ||
020 | |a 9783034895224 |c Print |9 978-3-0348-9522-4 | ||
024 | 7 | |a 10.1007/978-3-0348-8336-8 |2 doi | |
035 | |a (OCoLC)879624552 | ||
035 | |a (DE-599)BVBBV042422102 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 516 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a André, Yves |d 1959- |e Verfasser |0 (DE-588)142060895 |4 aut | |
245 | 1 | 0 | |a De Rham Cohomology of Differential Modules on Algebraic Varieties |c by Yves André, Francesco Baldassarri |
264 | 1 | |a Basel |b Birkhäuser Basel |c 2001 | |
300 | |a 1 Online-Ressource (VII, 214 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Mathematics |v 189 | |
500 | |a This is a study of algebraic differential modules in several variables, and of some of their relations with analytic differential modules. Let us explain its source. The idea of computing the cohomology of a manifold, in particular its Betti numbers, by means of differential forms goes back to E. Cartan and G. De Rham. In the case of a smooth complex algebraic variety X, there are three variants: i) using the De Rham complex of algebraic differential forms on X, ii) using the De Rham complex of holomorphic differential forms on the analytic an manifold X underlying X, iii) using the De Rham complex of Coo complex differential forms on the differ entiable manifold Xdlf underlying Xan. These variants tum out to be equivalent. Namely, one has canonical isomorphisms of hypercohomology: While the second isomorphism is a simple sheaf-theoretic consequence of the Poincare lemma, which identifies both vector spaces with the complex cohomology H (XtoP, C) of the topological space underlying X, the first isomorphism is a deeper result of A. Grothendieck, which shows in particular that the Betti numbers can be computed algebraically. This result has been generalized by P. Deligne to the case of nonconstant coeffi cients: for any algebraic vector bundle .M on X endowed with an integrable regular connection, one has canonical isomorphisms The notion of regular connection is a higher dimensional generalization of the classical notion of fuchsian differential equations (only regular singularities) | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Geometry | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Differentialmodul |0 (DE-588)4397443-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a DeRham-Komplex |0 (DE-588)4617507-6 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Algebraische Varietät |0 (DE-588)4581715-7 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a DeRham-Komplex |0 (DE-588)4617507-6 |D s |
689 | 0 | 1 | |a Differentialmodul |0 (DE-588)4397443-0 |D s |
689 | 0 | 2 | |a Algebraische Varietät |0 (DE-588)4581715-7 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
700 | 1 | |a Baldassarri, Francesco |d 1951- |e Sonstige |0 (DE-588)1077542771 |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8336-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857519 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096040873984 |
---|---|
any_adam_object | |
author | André, Yves 1959- |
author_GND | (DE-588)142060895 (DE-588)1077542771 |
author_facet | André, Yves 1959- |
author_role | aut |
author_sort | André, Yves 1959- |
author_variant | y a ya |
building | Verbundindex |
bvnumber | BV042422102 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)879624552 (DE-599)BVBBV042422102 |
dewey-full | 516 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 516 - Geometry |
dewey-raw | 516 |
dewey-search | 516 |
dewey-sort | 3516 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8336-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>03366nmm a2200505zcb4500</leader><controlfield tag="001">BV042422102</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20151110 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034883368</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8336-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034895224</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9522-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8336-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)879624552</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422102</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">516</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">André, Yves</subfield><subfield code="d">1959-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)142060895</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">De Rham Cohomology of Differential Modules on Algebraic Varieties</subfield><subfield code="c">by Yves André, Francesco Baldassarri</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 214 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">189</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This is a study of algebraic differential modules in several variables, and of some of their relations with analytic differential modules. Let us explain its source. The idea of computing the cohomology of a manifold, in particular its Betti numbers, by means of differential forms goes back to E. Cartan and G. De Rham. In the case of a smooth complex algebraic variety X, there are three variants: i) using the De Rham complex of algebraic differential forms on X, ii) using the De Rham complex of holomorphic differential forms on the analytic an manifold X underlying X, iii) using the De Rham complex of Coo complex differential forms on the differ entiable manifold Xdlf underlying Xan. These variants tum out to be equivalent. Namely, one has canonical isomorphisms of hypercohomology: While the second isomorphism is a simple sheaf-theoretic consequence of the Poincare lemma, which identifies both vector spaces with the complex cohomology H (XtoP, C) of the topological space underlying X, the first isomorphism is a deeper result of A. Grothendieck, which shows in particular that the Betti numbers can be computed algebraically. This result has been generalized by P. Deligne to the case of nonconstant coeffi cients: for any algebraic vector bundle .M on X endowed with an integrable regular connection, one has canonical isomorphisms The notion of regular connection is a higher dimensional generalization of the classical notion of fuchsian differential equations (only regular singularities)</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Geometry</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Differentialmodul</subfield><subfield code="0">(DE-588)4397443-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">DeRham-Komplex</subfield><subfield code="0">(DE-588)4617507-6</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Algebraische Varietät</subfield><subfield code="0">(DE-588)4581715-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">DeRham-Komplex</subfield><subfield code="0">(DE-588)4617507-6</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Differentialmodul</subfield><subfield code="0">(DE-588)4397443-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Algebraische Varietät</subfield><subfield code="0">(DE-588)4581715-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Baldassarri, Francesco</subfield><subfield code="d">1951-</subfield><subfield code="e">Sonstige</subfield><subfield code="0">(DE-588)1077542771</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8336-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857519</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422102 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034883368 9783034895224 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857519 |
oclc_num | 879624552 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VII, 214 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Progress in Mathematics |
spelling | André, Yves 1959- Verfasser (DE-588)142060895 aut De Rham Cohomology of Differential Modules on Algebraic Varieties by Yves André, Francesco Baldassarri Basel Birkhäuser Basel 2001 1 Online-Ressource (VII, 214 p) txt rdacontent c rdamedia cr rdacarrier Progress in Mathematics 189 This is a study of algebraic differential modules in several variables, and of some of their relations with analytic differential modules. Let us explain its source. The idea of computing the cohomology of a manifold, in particular its Betti numbers, by means of differential forms goes back to E. Cartan and G. De Rham. In the case of a smooth complex algebraic variety X, there are three variants: i) using the De Rham complex of algebraic differential forms on X, ii) using the De Rham complex of holomorphic differential forms on the analytic an manifold X underlying X, iii) using the De Rham complex of Coo complex differential forms on the differ entiable manifold Xdlf underlying Xan. These variants tum out to be equivalent. Namely, one has canonical isomorphisms of hypercohomology: While the second isomorphism is a simple sheaf-theoretic consequence of the Poincare lemma, which identifies both vector spaces with the complex cohomology H (XtoP, C) of the topological space underlying X, the first isomorphism is a deeper result of A. Grothendieck, which shows in particular that the Betti numbers can be computed algebraically. This result has been generalized by P. Deligne to the case of nonconstant coeffi cients: for any algebraic vector bundle .M on X endowed with an integrable regular connection, one has canonical isomorphisms The notion of regular connection is a higher dimensional generalization of the classical notion of fuchsian differential equations (only regular singularities) Mathematics Geometry Mathematik Differentialmodul (DE-588)4397443-0 gnd rswk-swf DeRham-Komplex (DE-588)4617507-6 gnd rswk-swf Algebraische Varietät (DE-588)4581715-7 gnd rswk-swf DeRham-Komplex (DE-588)4617507-6 s Differentialmodul (DE-588)4397443-0 s Algebraische Varietät (DE-588)4581715-7 s 1\p DE-604 Baldassarri, Francesco 1951- Sonstige (DE-588)1077542771 oth https://doi.org/10.1007/978-3-0348-8336-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | André, Yves 1959- De Rham Cohomology of Differential Modules on Algebraic Varieties Mathematics Geometry Mathematik Differentialmodul (DE-588)4397443-0 gnd DeRham-Komplex (DE-588)4617507-6 gnd Algebraische Varietät (DE-588)4581715-7 gnd |
subject_GND | (DE-588)4397443-0 (DE-588)4617507-6 (DE-588)4581715-7 |
title | De Rham Cohomology of Differential Modules on Algebraic Varieties |
title_auth | De Rham Cohomology of Differential Modules on Algebraic Varieties |
title_exact_search | De Rham Cohomology of Differential Modules on Algebraic Varieties |
title_full | De Rham Cohomology of Differential Modules on Algebraic Varieties by Yves André, Francesco Baldassarri |
title_fullStr | De Rham Cohomology of Differential Modules on Algebraic Varieties by Yves André, Francesco Baldassarri |
title_full_unstemmed | De Rham Cohomology of Differential Modules on Algebraic Varieties by Yves André, Francesco Baldassarri |
title_short | De Rham Cohomology of Differential Modules on Algebraic Varieties |
title_sort | de rham cohomology of differential modules on algebraic varieties |
topic | Mathematics Geometry Mathematik Differentialmodul (DE-588)4397443-0 gnd DeRham-Komplex (DE-588)4617507-6 gnd Algebraische Varietät (DE-588)4581715-7 gnd |
topic_facet | Mathematics Geometry Mathematik Differentialmodul DeRham-Komplex Algebraische Varietät |
url | https://doi.org/10.1007/978-3-0348-8336-8 |
work_keys_str_mv | AT andreyves derhamcohomologyofdifferentialmodulesonalgebraicvarieties AT baldassarrifrancesco derhamcohomologyofdifferentialmodulesonalgebraicvarieties |