Nonlinear Multiobjective Optimization: A Generalized Homotopy Approach
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
2001
|
Schriftenreihe: | International Series of Numerical Mathematics
135 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | Arguably, many industrial optimization problems are of the multiobjective type. The present work, after providing a survey of the state of the art in multiobjective optimization, gives new insight into this important mathematical field by consequently taking up the viewpoint of differential geometry. This approach, unprecedented in the literature, very naturally results in a generalized homotopy method for multiobjective optimization which is theoretically well-founded and numerically efficient. The power of the new method is demonstrated by solving two real-life problems of industrial optimization. The book presents recent results obtained by the author and is aimed at mathematicians, scientists, students and practitioners interested in optimization and numerical homotopy methods |
Beschreibung: | 1 Online-Ressource (IX, 135 p) |
ISBN: | 9783034882804 9783034895019 |
DOI: | 10.1007/978-3-0348-8280-4 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422088 | ||
003 | DE-604 | ||
005 | 20200812 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9783034882804 |c Online |9 978-3-0348-8280-4 | ||
020 | |a 9783034895019 |c Print |9 978-3-0348-9501-9 | ||
024 | 7 | |a 10.1007/978-3-0348-8280-4 |2 doi | |
035 | |a (OCoLC)1184449718 | ||
035 | |a (DE-599)BVBBV042422088 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Hillermeier, Claus |d 1960- |e Verfasser |0 (DE-588)113335636 |4 aut | |
245 | 1 | 0 | |a Nonlinear Multiobjective Optimization |b A Generalized Homotopy Approach |c by Claus Hillermeier |
264 | 1 | |a Basel |b Birkhäuser Basel |c 2001 | |
300 | |a 1 Online-Ressource (IX, 135 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a International Series of Numerical Mathematics |v 135 | |
500 | |a Arguably, many industrial optimization problems are of the multiobjective type. The present work, after providing a survey of the state of the art in multiobjective optimization, gives new insight into this important mathematical field by consequently taking up the viewpoint of differential geometry. This approach, unprecedented in the literature, very naturally results in a generalized homotopy method for multiobjective optimization which is theoretically well-founded and numerically efficient. The power of the new method is demonstrated by solving two real-life problems of industrial optimization. The book presents recent results obtained by the author and is aimed at mathematicians, scientists, students and practitioners interested in optimization and numerical homotopy methods | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Mehrkriterielle Optimierung |0 (DE-588)4610682-0 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Nichtlineare Optimierung |0 (DE-588)4128192-5 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Mehrkriterielle Optimierung |0 (DE-588)4610682-0 |D s |
689 | 0 | 1 | |a Nichtlineare Optimierung |0 (DE-588)4128192-5 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8280-4 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857505 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153096007319552 |
---|---|
any_adam_object | |
author | Hillermeier, Claus 1960- |
author_GND | (DE-588)113335636 |
author_facet | Hillermeier, Claus 1960- |
author_role | aut |
author_sort | Hillermeier, Claus 1960- |
author_variant | c h ch |
building | Verbundindex |
bvnumber | BV042422088 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1184449718 (DE-599)BVBBV042422088 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8280-4 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02499nmm a2200469zcb4500</leader><controlfield tag="001">BV042422088</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">20200812 </controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034882804</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8280-4</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034895019</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9501-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8280-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1184449718</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422088</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hillermeier, Claus</subfield><subfield code="d">1960-</subfield><subfield code="e">Verfasser</subfield><subfield code="0">(DE-588)113335636</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Nonlinear Multiobjective Optimization</subfield><subfield code="b">A Generalized Homotopy Approach</subfield><subfield code="c">by Claus Hillermeier</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (IX, 135 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">International Series of Numerical Mathematics</subfield><subfield code="v">135</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">Arguably, many industrial optimization problems are of the multiobjective type. The present work, after providing a survey of the state of the art in multiobjective optimization, gives new insight into this important mathematical field by consequently taking up the viewpoint of differential geometry. This approach, unprecedented in the literature, very naturally results in a generalized homotopy method for multiobjective optimization which is theoretically well-founded and numerically efficient. The power of the new method is demonstrated by solving two real-life problems of industrial optimization. The book presents recent results obtained by the author and is aimed at mathematicians, scientists, students and practitioners interested in optimization and numerical homotopy methods</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Mehrkriterielle Optimierung</subfield><subfield code="0">(DE-588)4610682-0</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Nichtlineare Optimierung</subfield><subfield code="0">(DE-588)4128192-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Mehrkriterielle Optimierung</subfield><subfield code="0">(DE-588)4610682-0</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Nichtlineare Optimierung</subfield><subfield code="0">(DE-588)4128192-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8280-4</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857505</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422088 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034882804 9783034895019 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857505 |
oclc_num | 1184449718 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (IX, 135 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | International Series of Numerical Mathematics |
spelling | Hillermeier, Claus 1960- Verfasser (DE-588)113335636 aut Nonlinear Multiobjective Optimization A Generalized Homotopy Approach by Claus Hillermeier Basel Birkhäuser Basel 2001 1 Online-Ressource (IX, 135 p) txt rdacontent c rdamedia cr rdacarrier International Series of Numerical Mathematics 135 Arguably, many industrial optimization problems are of the multiobjective type. The present work, after providing a survey of the state of the art in multiobjective optimization, gives new insight into this important mathematical field by consequently taking up the viewpoint of differential geometry. This approach, unprecedented in the literature, very naturally results in a generalized homotopy method for multiobjective optimization which is theoretically well-founded and numerically efficient. The power of the new method is demonstrated by solving two real-life problems of industrial optimization. The book presents recent results obtained by the author and is aimed at mathematicians, scientists, students and practitioners interested in optimization and numerical homotopy methods Mathematics Mathematics, general Mathematik Mehrkriterielle Optimierung (DE-588)4610682-0 gnd rswk-swf Nichtlineare Optimierung (DE-588)4128192-5 gnd rswk-swf Mehrkriterielle Optimierung (DE-588)4610682-0 s Nichtlineare Optimierung (DE-588)4128192-5 s 1\p DE-604 https://doi.org/10.1007/978-3-0348-8280-4 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Hillermeier, Claus 1960- Nonlinear Multiobjective Optimization A Generalized Homotopy Approach Mathematics Mathematics, general Mathematik Mehrkriterielle Optimierung (DE-588)4610682-0 gnd Nichtlineare Optimierung (DE-588)4128192-5 gnd |
subject_GND | (DE-588)4610682-0 (DE-588)4128192-5 |
title | Nonlinear Multiobjective Optimization A Generalized Homotopy Approach |
title_auth | Nonlinear Multiobjective Optimization A Generalized Homotopy Approach |
title_exact_search | Nonlinear Multiobjective Optimization A Generalized Homotopy Approach |
title_full | Nonlinear Multiobjective Optimization A Generalized Homotopy Approach by Claus Hillermeier |
title_fullStr | Nonlinear Multiobjective Optimization A Generalized Homotopy Approach by Claus Hillermeier |
title_full_unstemmed | Nonlinear Multiobjective Optimization A Generalized Homotopy Approach by Claus Hillermeier |
title_short | Nonlinear Multiobjective Optimization |
title_sort | nonlinear multiobjective optimization a generalized homotopy approach |
title_sub | A Generalized Homotopy Approach |
topic | Mathematics Mathematics, general Mathematik Mehrkriterielle Optimierung (DE-588)4610682-0 gnd Nichtlineare Optimierung (DE-588)4128192-5 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Mehrkriterielle Optimierung Nichtlineare Optimierung |
url | https://doi.org/10.1007/978-3-0348-8280-4 |
work_keys_str_mv | AT hillermeierclaus nonlinearmultiobjectiveoptimizationageneralizedhomotopyapproach |