The Structure of Functions:
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
2001
|
Schriftenreihe: | Monographs in Mathematics
97 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | This book deals with the symbiotic relationship between I Quarkonial decompositions of functions, on the one hand, and II Sharp inequalities and embeddings in function spaces, III Fractal elliptic operators, IV Regularity theory for some semi-linear equations, on the other hand. Accordingly, the book has four chapters. In Chapter I we present the Weier strassian approach to the theory of function spaces, which can be roughly described as follows. Let 'IjJ be a non-negative Coo function in]R. n with compact support such that {'ljJe - m) : m E zn} is a resolution of unity in ]R. n. Let 'IjJ!3(x) = x!3'IjJ(x) where x E ]R. n and {3 E N~. One may ask under which circumstances functions and distributions f in ]R. n admit expansions 00 (0. 1) f(x) = L L L ). . ~m'IjJ!3(2jx - m), x E ]R. n, n !3ENg j=O mEZ with the coefficients ). . ~m E C. This resembles, at least formally, the Weier strassian approach to holomorphic functions (in the complex plane), combined with the wavelet philosophy: translations x 1---4 x - m where m E zn and dyadic j dilations x 1---4 2 x where j E No in ]R. n. Such representations pave the way to constructive definitions offunction spaces |
Beschreibung: | 1 Online-Ressource (XII, 425 p) |
ISBN: | 9783034882576 9783034894944 |
DOI: | 10.1007/978-3-0348-8257-6 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422081 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9783034882576 |c Online |9 978-3-0348-8257-6 | ||
020 | |a 9783034894944 |c Print |9 978-3-0348-9494-4 | ||
024 | 7 | |a 10.1007/978-3-0348-8257-6 |2 doi | |
035 | |a (OCoLC)863777017 | ||
035 | |a (DE-599)BVBBV042422081 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 510 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Triebel, Hans |e Verfasser |4 aut | |
245 | 1 | 0 | |a The Structure of Functions |c by Hans Triebel |
264 | 1 | |a Basel |b Birkhäuser Basel |c 2001 | |
300 | |a 1 Online-Ressource (XII, 425 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Monographs in Mathematics |v 97 | |
500 | |a This book deals with the symbiotic relationship between I Quarkonial decompositions of functions, on the one hand, and II Sharp inequalities and embeddings in function spaces, III Fractal elliptic operators, IV Regularity theory for some semi-linear equations, on the other hand. Accordingly, the book has four chapters. In Chapter I we present the Weier strassian approach to the theory of function spaces, which can be roughly described as follows. Let 'IjJ be a non-negative Coo function in]R. n with compact support such that {'ljJe - m) : m E zn} is a resolution of unity in ]R. n. Let 'IjJ!3(x) = x!3'IjJ(x) where x E ]R. n and {3 E N~. One may ask under which circumstances functions and distributions f in ]R. n admit expansions 00 (0. 1) f(x) = L L L ). . ~m'IjJ!3(2jx - m), x E ]R. n, n !3ENg j=O mEZ with the coefficients ). . ~m E C. This resembles, at least formally, the Weier strassian approach to holomorphic functions (in the complex plane), combined with the wavelet philosophy: translations x 1---4 x - m where m E zn and dyadic j dilations x 1---4 2 x where j E No in ]R. n. Such representations pave the way to constructive definitions offunction spaces | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Mathematics, general | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Funktionenraum |0 (DE-588)4134834-5 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Wavelet |0 (DE-588)4215427-3 |2 gnd |9 rswk-swf |
650 | 0 | 7 | |a Fraktal |0 (DE-588)4123220-3 |2 gnd |9 rswk-swf |
689 | 0 | 0 | |a Funktionenraum |0 (DE-588)4134834-5 |D s |
689 | 0 | 1 | |a Fraktal |0 (DE-588)4123220-3 |D s |
689 | 0 | 2 | |a Wavelet |0 (DE-588)4215427-3 |D s |
689 | 0 | |8 1\p |5 DE-604 | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8257-6 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857498 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095997882368 |
---|---|
any_adam_object | |
author | Triebel, Hans |
author_facet | Triebel, Hans |
author_role | aut |
author_sort | Triebel, Hans |
author_variant | h t ht |
building | Verbundindex |
bvnumber | BV042422081 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)863777017 (DE-599)BVBBV042422081 |
dewey-full | 510 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 510 - Mathematics |
dewey-raw | 510 |
dewey-search | 510 |
dewey-sort | 3510 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8257-6 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02833nmm a2200493zcb4500</leader><controlfield tag="001">BV042422081</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034882576</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8257-6</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034894944</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9494-4</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8257-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)863777017</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422081</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">510</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Triebel, Hans</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The Structure of Functions</subfield><subfield code="c">by Hans Triebel</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (XII, 425 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Monographs in Mathematics</subfield><subfield code="v">97</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">This book deals with the symbiotic relationship between I Quarkonial decompositions of functions, on the one hand, and II Sharp inequalities and embeddings in function spaces, III Fractal elliptic operators, IV Regularity theory for some semi-linear equations, on the other hand. Accordingly, the book has four chapters. In Chapter I we present the Weier strassian approach to the theory of function spaces, which can be roughly described as follows. Let 'IjJ be a non-negative Coo function in]R. n with compact support such that {'ljJe - m) : m E zn} is a resolution of unity in ]R. n. Let 'IjJ!3(x) = x!3'IjJ(x) where x E ]R. n and {3 E N~. One may ask under which circumstances functions and distributions f in ]R. n admit expansions 00 (0. 1) f(x) = L L L ). . ~m'IjJ!3(2jx - m), x E ]R. n, n !3ENg j=O mEZ with the coefficients ). . ~m E C. This resembles, at least formally, the Weier strassian approach to holomorphic functions (in the complex plane), combined with the wavelet philosophy: translations x 1---4 x - m where m E zn and dyadic j dilations x 1---4 2 x where j E No in ]R. n. Such representations pave the way to constructive definitions offunction spaces</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics, general</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Funktionenraum</subfield><subfield code="0">(DE-588)4134834-5</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Wavelet</subfield><subfield code="0">(DE-588)4215427-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Funktionenraum</subfield><subfield code="0">(DE-588)4134834-5</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="1"><subfield code="a">Fraktal</subfield><subfield code="0">(DE-588)4123220-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2="2"><subfield code="a">Wavelet</subfield><subfield code="0">(DE-588)4215427-3</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">1\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8257-6</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857498</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
id | DE-604.BV042422081 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034882576 9783034894944 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857498 |
oclc_num | 863777017 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (XII, 425 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Monographs in Mathematics |
spelling | Triebel, Hans Verfasser aut The Structure of Functions by Hans Triebel Basel Birkhäuser Basel 2001 1 Online-Ressource (XII, 425 p) txt rdacontent c rdamedia cr rdacarrier Monographs in Mathematics 97 This book deals with the symbiotic relationship between I Quarkonial decompositions of functions, on the one hand, and II Sharp inequalities and embeddings in function spaces, III Fractal elliptic operators, IV Regularity theory for some semi-linear equations, on the other hand. Accordingly, the book has four chapters. In Chapter I we present the Weier strassian approach to the theory of function spaces, which can be roughly described as follows. Let 'IjJ be a non-negative Coo function in]R. n with compact support such that {'ljJe - m) : m E zn} is a resolution of unity in ]R. n. Let 'IjJ!3(x) = x!3'IjJ(x) where x E ]R. n and {3 E N~. One may ask under which circumstances functions and distributions f in ]R. n admit expansions 00 (0. 1) f(x) = L L L ). . ~m'IjJ!3(2jx - m), x E ]R. n, n !3ENg j=O mEZ with the coefficients ). . ~m E C. This resembles, at least formally, the Weier strassian approach to holomorphic functions (in the complex plane), combined with the wavelet philosophy: translations x 1---4 x - m where m E zn and dyadic j dilations x 1---4 2 x where j E No in ]R. n. Such representations pave the way to constructive definitions offunction spaces Mathematics Mathematics, general Mathematik Funktionenraum (DE-588)4134834-5 gnd rswk-swf Wavelet (DE-588)4215427-3 gnd rswk-swf Fraktal (DE-588)4123220-3 gnd rswk-swf Funktionenraum (DE-588)4134834-5 s Fraktal (DE-588)4123220-3 s Wavelet (DE-588)4215427-3 s 1\p DE-604 https://doi.org/10.1007/978-3-0348-8257-6 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Triebel, Hans The Structure of Functions Mathematics Mathematics, general Mathematik Funktionenraum (DE-588)4134834-5 gnd Wavelet (DE-588)4215427-3 gnd Fraktal (DE-588)4123220-3 gnd |
subject_GND | (DE-588)4134834-5 (DE-588)4215427-3 (DE-588)4123220-3 |
title | The Structure of Functions |
title_auth | The Structure of Functions |
title_exact_search | The Structure of Functions |
title_full | The Structure of Functions by Hans Triebel |
title_fullStr | The Structure of Functions by Hans Triebel |
title_full_unstemmed | The Structure of Functions by Hans Triebel |
title_short | The Structure of Functions |
title_sort | the structure of functions |
topic | Mathematics Mathematics, general Mathematik Funktionenraum (DE-588)4134834-5 gnd Wavelet (DE-588)4215427-3 gnd Fraktal (DE-588)4123220-3 gnd |
topic_facet | Mathematics Mathematics, general Mathematik Funktionenraum Wavelet Fraktal |
url | https://doi.org/10.1007/978-3-0348-8257-6 |
work_keys_str_mv | AT triebelhans thestructureoffunctions |