Groups with the Haagerup Property: Gromov’s a-T-menability
Gespeichert in:
1. Verfasser: | |
---|---|
Format: | Elektronisch E-Book |
Sprache: | English |
Veröffentlicht: |
Basel
Birkhäuser Basel
2001
|
Schriftenreihe: | Progress in Mathematics
197 |
Schlagworte: | |
Online-Zugang: | Volltext |
Beschreibung: | A locally compact group has the Haagerup property, or is a-T-menable in the sense of Gromov, if it admits a proper isometric action on some affine Hilbert space. As Gromov's pun is trying to indicate, this definition is designed as a strong negation to Kazhdan's property (T), characterized by the fact that every isometric action on some affine Hilbert space has a fixed point. The aim of this book is to cover, for the first time in book form, various aspects of the Haagerup property. New characterizations are brought in, using ergodic theory or operator algebras. Several new examples are given, and new approaches to previously known examples are proposed. Connected Lie groups with the Haagerup property are completely characterized |
Beschreibung: | 1 Online-Ressource (VII, 126 p) |
ISBN: | 9783034882378 9783034894869 |
DOI: | 10.1007/978-3-0348-8237-8 |
Internformat
MARC
LEADER | 00000nmm a2200000zcb4500 | ||
---|---|---|---|
001 | BV042422076 | ||
003 | DE-604 | ||
005 | 00000000000000.0 | ||
007 | cr|uuu---uuuuu | ||
008 | 150317s2001 |||| o||u| ||||||eng d | ||
020 | |a 9783034882378 |c Online |9 978-3-0348-8237-8 | ||
020 | |a 9783034894869 |c Print |9 978-3-0348-9486-9 | ||
024 | 7 | |a 10.1007/978-3-0348-8237-8 |2 doi | |
035 | |a (OCoLC)1165528806 | ||
035 | |a (DE-599)BVBBV042422076 | ||
040 | |a DE-604 |b ger |e aacr | ||
041 | 0 | |a eng | |
049 | |a DE-384 |a DE-703 |a DE-91 |a DE-634 | ||
082 | 0 | |a 512.2 |2 23 | |
084 | |a MAT 000 |2 stub | ||
100 | 1 | |a Cherix, Pierre-Alain |e Verfasser |4 aut | |
245 | 1 | 0 | |a Groups with the Haagerup Property |b Gromov’s a-T-menability |c by Pierre-Alain Cherix, Paul Jolissaint, Alain Valette, Michael Cowling, Pierre Julg |
264 | 1 | |a Basel |b Birkhäuser Basel |c 2001 | |
300 | |a 1 Online-Ressource (VII, 126 p) | ||
336 | |b txt |2 rdacontent | ||
337 | |b c |2 rdamedia | ||
338 | |b cr |2 rdacarrier | ||
490 | 0 | |a Progress in Mathematics |v 197 | |
500 | |a A locally compact group has the Haagerup property, or is a-T-menable in the sense of Gromov, if it admits a proper isometric action on some affine Hilbert space. As Gromov's pun is trying to indicate, this definition is designed as a strong negation to Kazhdan's property (T), characterized by the fact that every isometric action on some affine Hilbert space has a fixed point. The aim of this book is to cover, for the first time in book form, various aspects of the Haagerup property. New characterizations are brought in, using ergodic theory or operator algebras. Several new examples are given, and new approaches to previously known examples are proposed. Connected Lie groups with the Haagerup property are completely characterized | ||
650 | 4 | |a Mathematics | |
650 | 4 | |a Group theory | |
650 | 4 | |a Topological Groups | |
650 | 4 | |a Group Theory and Generalizations | |
650 | 4 | |a Topological Groups, Lie Groups | |
650 | 4 | |a Mathematik | |
650 | 0 | 7 | |a Gruppentheorie |0 (DE-588)4072157-7 |2 gnd |9 rswk-swf |
655 | 7 | |8 1\p |0 (DE-588)4143413-4 |a Aufsatzsammlung |2 gnd-content | |
689 | 0 | 0 | |a Gruppentheorie |0 (DE-588)4072157-7 |D s |
689 | 0 | |8 2\p |5 DE-604 | |
700 | 1 | |a Jolissaint, Paul |e Sonstige |4 oth | |
700 | 1 | |a Valette, Alain |e Sonstige |4 oth | |
700 | 1 | |a Cowling, Michael |e Sonstige |4 oth | |
700 | 1 | |a Julg, Pierre |e Sonstige |4 oth | |
856 | 4 | 0 | |u https://doi.org/10.1007/978-3-0348-8237-8 |x Verlag |3 Volltext |
912 | |a ZDB-2-SMA |a ZDB-2-BAE | ||
940 | 1 | |q ZDB-2-SMA_Archive | |
999 | |a oai:aleph.bib-bvb.de:BVB01-027857493 | ||
883 | 1 | |8 1\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk | |
883 | 1 | |8 2\p |a cgwrk |d 20201028 |q DE-101 |u https://d-nb.info/provenance/plan#cgwrk |
Datensatz im Suchindex
_version_ | 1804153095967473664 |
---|---|
any_adam_object | |
author | Cherix, Pierre-Alain |
author_facet | Cherix, Pierre-Alain |
author_role | aut |
author_sort | Cherix, Pierre-Alain |
author_variant | p a c pac |
building | Verbundindex |
bvnumber | BV042422076 |
classification_tum | MAT 000 |
collection | ZDB-2-SMA ZDB-2-BAE |
ctrlnum | (OCoLC)1165528806 (DE-599)BVBBV042422076 |
dewey-full | 512.2 |
dewey-hundreds | 500 - Natural sciences and mathematics |
dewey-ones | 512 - Algebra |
dewey-raw | 512.2 |
dewey-search | 512.2 |
dewey-sort | 3512.2 |
dewey-tens | 510 - Mathematics |
discipline | Mathematik |
doi_str_mv | 10.1007/978-3-0348-8237-8 |
format | Electronic eBook |
fullrecord | <?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>02758nmm a2200553zcb4500</leader><controlfield tag="001">BV042422076</controlfield><controlfield tag="003">DE-604</controlfield><controlfield tag="005">00000000000000.0</controlfield><controlfield tag="007">cr|uuu---uuuuu</controlfield><controlfield tag="008">150317s2001 |||| o||u| ||||||eng d</controlfield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034882378</subfield><subfield code="c">Online</subfield><subfield code="9">978-3-0348-8237-8</subfield></datafield><datafield tag="020" ind1=" " ind2=" "><subfield code="a">9783034894869</subfield><subfield code="c">Print</subfield><subfield code="9">978-3-0348-9486-9</subfield></datafield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/978-3-0348-8237-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(OCoLC)1165528806</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-599)BVBBV042422076</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-604</subfield><subfield code="b">ger</subfield><subfield code="e">aacr</subfield></datafield><datafield tag="041" ind1="0" ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="049" ind1=" " ind2=" "><subfield code="a">DE-384</subfield><subfield code="a">DE-703</subfield><subfield code="a">DE-91</subfield><subfield code="a">DE-634</subfield></datafield><datafield tag="082" ind1="0" ind2=" "><subfield code="a">512.2</subfield><subfield code="2">23</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">MAT 000</subfield><subfield code="2">stub</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cherix, Pierre-Alain</subfield><subfield code="e">Verfasser</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Groups with the Haagerup Property</subfield><subfield code="b">Gromov’s a-T-menability</subfield><subfield code="c">by Pierre-Alain Cherix, Paul Jolissaint, Alain Valette, Michael Cowling, Pierre Julg</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="a">Basel</subfield><subfield code="b">Birkhäuser Basel</subfield><subfield code="c">2001</subfield></datafield><datafield tag="300" ind1=" " ind2=" "><subfield code="a">1 Online-Ressource (VII, 126 p)</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="b">c</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="b">cr</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="490" ind1="0" ind2=" "><subfield code="a">Progress in Mathematics</subfield><subfield code="v">197</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">A locally compact group has the Haagerup property, or is a-T-menable in the sense of Gromov, if it admits a proper isometric action on some affine Hilbert space. As Gromov's pun is trying to indicate, this definition is designed as a strong negation to Kazhdan's property (T), characterized by the fact that every isometric action on some affine Hilbert space has a fixed point. The aim of this book is to cover, for the first time in book form, various aspects of the Haagerup property. New characterizations are brought in, using ergodic theory or operator algebras. Several new examples are given, and new approaches to previously known examples are proposed. Connected Lie groups with the Haagerup property are completely characterized</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Group Theory and Generalizations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topological Groups, Lie Groups</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mathematik</subfield></datafield><datafield tag="650" ind1="0" ind2="7"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="2">gnd</subfield><subfield code="9">rswk-swf</subfield></datafield><datafield tag="655" ind1=" " ind2="7"><subfield code="8">1\p</subfield><subfield code="0">(DE-588)4143413-4</subfield><subfield code="a">Aufsatzsammlung</subfield><subfield code="2">gnd-content</subfield></datafield><datafield tag="689" ind1="0" ind2="0"><subfield code="a">Gruppentheorie</subfield><subfield code="0">(DE-588)4072157-7</subfield><subfield code="D">s</subfield></datafield><datafield tag="689" ind1="0" ind2=" "><subfield code="8">2\p</subfield><subfield code="5">DE-604</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jolissaint, Paul</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Valette, Alain</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cowling, Michael</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Julg, Pierre</subfield><subfield code="e">Sonstige</subfield><subfield code="4">oth</subfield></datafield><datafield tag="856" ind1="4" ind2="0"><subfield code="u">https://doi.org/10.1007/978-3-0348-8237-8</subfield><subfield code="x">Verlag</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">ZDB-2-SMA</subfield><subfield code="a">ZDB-2-BAE</subfield></datafield><datafield tag="940" ind1="1" ind2=" "><subfield code="q">ZDB-2-SMA_Archive</subfield></datafield><datafield tag="999" ind1=" " ind2=" "><subfield code="a">oai:aleph.bib-bvb.de:BVB01-027857493</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">1\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield><datafield tag="883" ind1="1" ind2=" "><subfield code="8">2\p</subfield><subfield code="a">cgwrk</subfield><subfield code="d">20201028</subfield><subfield code="q">DE-101</subfield><subfield code="u">https://d-nb.info/provenance/plan#cgwrk</subfield></datafield></record></collection> |
genre | 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content |
genre_facet | Aufsatzsammlung |
id | DE-604.BV042422076 |
illustrated | Not Illustrated |
indexdate | 2024-07-10T01:21:10Z |
institution | BVB |
isbn | 9783034882378 9783034894869 |
language | English |
oai_aleph_id | oai:aleph.bib-bvb.de:BVB01-027857493 |
oclc_num | 1165528806 |
open_access_boolean | |
owner | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
owner_facet | DE-384 DE-703 DE-91 DE-BY-TUM DE-634 |
physical | 1 Online-Ressource (VII, 126 p) |
psigel | ZDB-2-SMA ZDB-2-BAE ZDB-2-SMA_Archive |
publishDate | 2001 |
publishDateSearch | 2001 |
publishDateSort | 2001 |
publisher | Birkhäuser Basel |
record_format | marc |
series2 | Progress in Mathematics |
spelling | Cherix, Pierre-Alain Verfasser aut Groups with the Haagerup Property Gromov’s a-T-menability by Pierre-Alain Cherix, Paul Jolissaint, Alain Valette, Michael Cowling, Pierre Julg Basel Birkhäuser Basel 2001 1 Online-Ressource (VII, 126 p) txt rdacontent c rdamedia cr rdacarrier Progress in Mathematics 197 A locally compact group has the Haagerup property, or is a-T-menable in the sense of Gromov, if it admits a proper isometric action on some affine Hilbert space. As Gromov's pun is trying to indicate, this definition is designed as a strong negation to Kazhdan's property (T), characterized by the fact that every isometric action on some affine Hilbert space has a fixed point. The aim of this book is to cover, for the first time in book form, various aspects of the Haagerup property. New characterizations are brought in, using ergodic theory or operator algebras. Several new examples are given, and new approaches to previously known examples are proposed. Connected Lie groups with the Haagerup property are completely characterized Mathematics Group theory Topological Groups Group Theory and Generalizations Topological Groups, Lie Groups Mathematik Gruppentheorie (DE-588)4072157-7 gnd rswk-swf 1\p (DE-588)4143413-4 Aufsatzsammlung gnd-content Gruppentheorie (DE-588)4072157-7 s 2\p DE-604 Jolissaint, Paul Sonstige oth Valette, Alain Sonstige oth Cowling, Michael Sonstige oth Julg, Pierre Sonstige oth https://doi.org/10.1007/978-3-0348-8237-8 Verlag Volltext 1\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk 2\p cgwrk 20201028 DE-101 https://d-nb.info/provenance/plan#cgwrk |
spellingShingle | Cherix, Pierre-Alain Groups with the Haagerup Property Gromov’s a-T-menability Mathematics Group theory Topological Groups Group Theory and Generalizations Topological Groups, Lie Groups Mathematik Gruppentheorie (DE-588)4072157-7 gnd |
subject_GND | (DE-588)4072157-7 (DE-588)4143413-4 |
title | Groups with the Haagerup Property Gromov’s a-T-menability |
title_auth | Groups with the Haagerup Property Gromov’s a-T-menability |
title_exact_search | Groups with the Haagerup Property Gromov’s a-T-menability |
title_full | Groups with the Haagerup Property Gromov’s a-T-menability by Pierre-Alain Cherix, Paul Jolissaint, Alain Valette, Michael Cowling, Pierre Julg |
title_fullStr | Groups with the Haagerup Property Gromov’s a-T-menability by Pierre-Alain Cherix, Paul Jolissaint, Alain Valette, Michael Cowling, Pierre Julg |
title_full_unstemmed | Groups with the Haagerup Property Gromov’s a-T-menability by Pierre-Alain Cherix, Paul Jolissaint, Alain Valette, Michael Cowling, Pierre Julg |
title_short | Groups with the Haagerup Property |
title_sort | groups with the haagerup property gromov s a t menability |
title_sub | Gromov’s a-T-menability |
topic | Mathematics Group theory Topological Groups Group Theory and Generalizations Topological Groups, Lie Groups Mathematik Gruppentheorie (DE-588)4072157-7 gnd |
topic_facet | Mathematics Group theory Topological Groups Group Theory and Generalizations Topological Groups, Lie Groups Mathematik Gruppentheorie Aufsatzsammlung |
url | https://doi.org/10.1007/978-3-0348-8237-8 |
work_keys_str_mv | AT cherixpierrealain groupswiththehaageruppropertygromovsatmenability AT jolissaintpaul groupswiththehaageruppropertygromovsatmenability AT valettealain groupswiththehaageruppropertygromovsatmenability AT cowlingmichael groupswiththehaageruppropertygromovsatmenability AT julgpierre groupswiththehaageruppropertygromovsatmenability |